-
Je něco špatně v tomto záznamu ?
Injikovatelný hydrogel funkcionalizovaný suspenzí bohatou na trombocyty a mikročásticemi pro urychlení regenerace chrupavky
[Injectable hydrogel functionalised with thrombocyte - rich solution and microparticles for accelerated cartilage regeneration]
M. Rampichová, M. Buzgo, B. Křížková, E. Prosecká, M. Pouzar, L. Štrajtová
Jazyk čeština Země Česko
Typ dokumentu práce podpořená grantem
- MeSH
- injekce intraartikulární MeSH
- kloubní chrupavka * patologie účinky léků MeSH
- lékové transportní systémy * metody MeSH
- multipotentní kmenové buňky * fyziologie metabolismus MeSH
- nanovlákna terapeutické užití MeSH
- nosiče léků * MeSH
- osteoartróza terapie MeSH
- PEG-DMA hydrogel terapeutické užití MeSH
- příprava léků metody MeSH
- proliferace buněk MeSH
- řízená tkáňová regenerace * metody MeSH
- techniky in vitro MeSH
- trombocyty fyziologie metabolismus MeSH
- Publikační typ
- práce podpořená grantem MeSH
PURPOSE OF THE STUDY Articular cartilage defects arise due to injury or osteochondral disease such as osteonecrosis or osteochondritis dissecans. In adult patients cartilage has minimal ability to repair itself and the lesions develop into degenerative arthritis. Overcoming the low regenerative capacity of the cartilage cells and the Hayflick limit poses a challenge for the therapy of osteochondral defects. Composite scaffolds with appropriate biomechanical properties combined with a suitable blend of proliferation and differentiation factors could be a solution. The aim of this in vitro study was to develop a novel functionalised hydrogel with an integrated drug delivery system stimulating articular cartilage regeneration. MATERIAL AND METHODS Injectable collagen/ hyaluronic acid/fibrin composite hydrogel was mixed with nanofibre-based microparticles. These were loaded with ascorbic acid and dexamethasone. In addition, the effect of thrombocyte-rich solution (TRS) was studied. The gels seeded with mesenchymal stem cells (MSCs) were cultivated for 14 days. The viability, proliferation and morphology of the cells were evaluated using molecular and microscopic methods. Scaffold degradation was also assessed. RESULTS The cultivation study showed that MSCs remained viable in all experimental groups, which indicated good biocompatibility of the gel. However, the number of cells in the groups enriched with microparticles was lower than in the other groups. On the other hand, confocal microscopy showed higher cell viability and rounded morphology of the cells, which can be associated with chodrogenic differentiation. The scaffolds containing microparticles showed significantly higher stability during the 14-day experiment. DISCUSSION Our results suggest that the addition of microparticles to the scaffold improved cell differentiation into the chondrogenic lineage, resulting in a lower proliferation rate. Cell viability was better in the groups enriched with microparticles that served as an efficient drug delivery system. In addition, the presence of microparticles slowed down gel degradation which can help achieve sufficient stability of the system for the time frame required for cartilage regeneration. CONCLUSIONS The novel approach described here produced an efficient system where microparticles served as a drug delivery system and stabilised the gel for prolonged periods of time. These characteristics play an important role in the development of scaffolds for cartilage regeneration. In the future the results of these in vitro experiments will be verified in an in vivo study.
CB Bio s r o Praha Dolní Počernice
Národní Tkáňové Centrum a s Brno
Student Science s r o Horní Podluží
Univerzita Pardubice Katedra biologických a biochemických věd Pardubice
Univerzita Pardubice Ústav environmentálního a chemického inženýrství Pardubice
Ústav biofyziky 2 lékařská fakulta Univerzita Karlova Praha Praha
Injectable hydrogel functionalised with thrombocyte - rich solution and microparticles for accelerated cartilage regeneration
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13008709
- 003
- CZ-PrNML
- 005
- 20130326100113.0
- 007
- ta
- 008
- 130305s2013 xr fd f 000 0cze||
- 009
- AR
- 024 7_
- $2 doi $a 10.55095/achot2013/013
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a cze $b eng
- 044 __
- $a xr
- 100 1_
- $a Rampichová, Michala $7 xx0171325 $u CB Bio s.r.o., Praha-Dolní Počernice; Ústav biofyziky, 2. lékařská fakulta, Univerzita Karlova v Praze, Praha 5
- 245 10
- $a Injikovatelný hydrogel funkcionalizovaný suspenzí bohatou na trombocyty a mikročásticemi pro urychlení regenerace chrupavky / $c M. Rampichová, M. Buzgo, B. Křížková, E. Prosecká, M. Pouzar, L. Štrajtová
- 246 31
- $a Injectable hydrogel functionalised with thrombocyte - rich solution and microparticles for accelerated cartilage regeneration
- 520 9_
- $a PURPOSE OF THE STUDY Articular cartilage defects arise due to injury or osteochondral disease such as osteonecrosis or osteochondritis dissecans. In adult patients cartilage has minimal ability to repair itself and the lesions develop into degenerative arthritis. Overcoming the low regenerative capacity of the cartilage cells and the Hayflick limit poses a challenge for the therapy of osteochondral defects. Composite scaffolds with appropriate biomechanical properties combined with a suitable blend of proliferation and differentiation factors could be a solution. The aim of this in vitro study was to develop a novel functionalised hydrogel with an integrated drug delivery system stimulating articular cartilage regeneration. MATERIAL AND METHODS Injectable collagen/ hyaluronic acid/fibrin composite hydrogel was mixed with nanofibre-based microparticles. These were loaded with ascorbic acid and dexamethasone. In addition, the effect of thrombocyte-rich solution (TRS) was studied. The gels seeded with mesenchymal stem cells (MSCs) were cultivated for 14 days. The viability, proliferation and morphology of the cells were evaluated using molecular and microscopic methods. Scaffold degradation was also assessed. RESULTS The cultivation study showed that MSCs remained viable in all experimental groups, which indicated good biocompatibility of the gel. However, the number of cells in the groups enriched with microparticles was lower than in the other groups. On the other hand, confocal microscopy showed higher cell viability and rounded morphology of the cells, which can be associated with chodrogenic differentiation. The scaffolds containing microparticles showed significantly higher stability during the 14-day experiment. DISCUSSION Our results suggest that the addition of microparticles to the scaffold improved cell differentiation into the chondrogenic lineage, resulting in a lower proliferation rate. Cell viability was better in the groups enriched with microparticles that served as an efficient drug delivery system. In addition, the presence of microparticles slowed down gel degradation which can help achieve sufficient stability of the system for the time frame required for cartilage regeneration. CONCLUSIONS The novel approach described here produced an efficient system where microparticles served as a drug delivery system and stabilised the gel for prolonged periods of time. These characteristics play an important role in the development of scaffolds for cartilage regeneration. In the future the results of these in vitro experiments will be verified in an in vivo study.
- 650 12
- $a kloubní chrupavka $x patologie $x účinky léků $7 D002358
- 650 12
- $a řízená tkáňová regenerace $x metody $7 D048091
- 650 12
- $a multipotentní kmenové buňky $x fyziologie $x metabolismus $7 D039902
- 650 12
- $a nosiče léků $7 D004337
- 650 _2
- $a nanovlákna $x terapeutické užití $7 D057139
- 650 _2
- $a PEG-DMA hydrogel $x terapeutické užití $7 D020136
- 650 _2
- $a trombocyty $x fyziologie $x metabolismus $7 D001792
- 650 _2
- $a proliferace buněk $7 D049109
- 650 12
- $a lékové transportní systémy $x metody $7 D016503
- 650 _2
- $a injekce intraartikulární $7 D007270
- 650 _2
- $a příprava léků $x metody $7 D004339
- 650 _2
- $a osteoartróza $x terapie $7 D010003
- 650 _2
- $a techniky in vitro $7 D066298
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Buzgo, Matej. $7 xx0255533 $u Ústav biofyziky, 2. lékařská fakulta, Univerzita Karlova v Praze, Praha 5; Student Science s.r.o., Horní Podluží
- 700 1_
- $a Křížková, B. $7 _AN071609 $u Univerzita Pardubice, Katedra biologických a biochemických věd, Pardubice
- 700 1_
- $a Prosecká, Eva $7 xx0171465 $u Ústav biofyziky, 2. lékařská fakulta, Univerzita Karlova v Praze, Praha 5
- 700 1_
- $a Pouzar, Miloslav. $7 jo2013794458 $u Univerzita Pardubice, Ústav environmentálního a chemického inženýrství, Pardubice
- 700 1_
- $a Štrajtová, Lucie $7 xx0127155 $u Národní Tkáňové Centrum a.s., Brno
- 773 0_
- $t Acta chirurgiae orthopaedicae et traumatologiae čechoslovaca $x 0001-5415 $g Roč. 80, č. 1 (2013), s. 82-88 $w MED00011021
- 910 __
- $a ABA008 $b A 8 $c 507 $y 3 $z 0
- 990 __
- $a 20130304122922 $b ABA008
- 991 __
- $a 20130326100330 $b ABA008
- 999 __
- $a ok $b bmc $g 971421 $s 806953
- BAS __
- $a 3
- BMC __
- $a 2013 $b 80 $c 1 $i 0001-5415 $m Acta chirurgiae orthopaedicae et traumatologiae Čechoslovaca $n Acta chir. orthop. traumatol. Čechoslovaca $x MED00011021 $d 82-88
- LZP __
- $c NLK125 $d 20130326 $a NLK 2013-13/vt