-
Je něco špatně v tomto záznamu ?
Treatment monitoring of HIV-infected patients based on mechanistic models
M. Prague, D. Commenges, J. Drylewicz, R. Thiébaut,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Medline Complete (EBSCOhost)
od 2003-03-01 do Před 1 rokem
Wiley Online Library (archiv)
od 1999-01-01 do 2012-12-31
PubMed
22934714
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- biometrie MeSH
- CD4-pozitivní T-lymfocyty účinky léků imunologie virologie MeSH
- HIV infekce farmakoterapie imunologie virologie MeSH
- klinické zkoušky jako téma statistika a číselné údaje MeSH
- látky proti HIV aplikace a dávkování škodlivé účinky MeSH
- lidé MeSH
- modely imunologické MeSH
- monitorování léčiv statistika a číselné údaje MeSH
- statistické modely * MeSH
- virová nálož účinky léků MeSH
- vysoce aktivní antiretrovirová terapie * škodlivé účinky MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
For most patients, the HIV viral load can be made undetectable by highly active antiretroviral treatments highly active antiretroviral therapy: the virus, however, cannot be eradicated. Thus, the major problem is to try to reduce the side effects of the treatment that patients have to take during their life time. We tackle the problem of monitoring the treatment dose, with the aim of giving the minimum dose that yields an undetectable viral load. The approach is based on mechanistic models of the interaction between virus and the immune system. It is shown that the "activated cells model," allows making good predictions of the effect of dose changes and, thus, could be a good basis for treatment monitoring. Then, we use the fact that in dynamical models, there is a nontrivial equilibrium point, that is with a virus load larger than zero, only if the reproductive number R(0) is larger than one. For reducing side effects, we may give a dose just above the critical dose corresponding to R(0) equal to 1. A prior distribution of the parameters of the model can be taken as the posterior arising from the analysis of previous clinical trials. Then the observations for a given patient can be used to dynamically tune the dose so that there is a high probability that the reproductive number is below one. The advantage of the approach is that it does not depend on a cost function, weighing side effects and efficiency of the drug. It is shown that it is possible to approach the critical dose if the model is correct. A sensitivity analysis assesses the robustness of the approach.
University of Bordeaux ISPED Centre INSERM U897 Épidémiologie Biostatistique F 33000 Bordeaux France
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13012505
- 003
- CZ-PrNML
- 005
- 20130415094101.0
- 007
- ta
- 008
- 130404s2012 xxu f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)22934714
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Prague, Mélanie $u University of Bordeaux, ISPED, Centre INSERM U897-Épidémiologie-Biostatistique, F-33000 Bordeaux, France. melanie.prague@isped.u-bordeaux2.fr
- 245 10
- $a Treatment monitoring of HIV-infected patients based on mechanistic models / $c M. Prague, D. Commenges, J. Drylewicz, R. Thiébaut,
- 520 9_
- $a For most patients, the HIV viral load can be made undetectable by highly active antiretroviral treatments highly active antiretroviral therapy: the virus, however, cannot be eradicated. Thus, the major problem is to try to reduce the side effects of the treatment that patients have to take during their life time. We tackle the problem of monitoring the treatment dose, with the aim of giving the minimum dose that yields an undetectable viral load. The approach is based on mechanistic models of the interaction between virus and the immune system. It is shown that the "activated cells model," allows making good predictions of the effect of dose changes and, thus, could be a good basis for treatment monitoring. Then, we use the fact that in dynamical models, there is a nontrivial equilibrium point, that is with a virus load larger than zero, only if the reproductive number R(0) is larger than one. For reducing side effects, we may give a dose just above the critical dose corresponding to R(0) equal to 1. A prior distribution of the parameters of the model can be taken as the posterior arising from the analysis of previous clinical trials. Then the observations for a given patient can be used to dynamically tune the dose so that there is a high probability that the reproductive number is below one. The advantage of the approach is that it does not depend on a cost function, weighing side effects and efficiency of the drug. It is shown that it is possible to approach the critical dose if the model is correct. A sensitivity analysis assesses the robustness of the approach.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a látky proti HIV $x aplikace a dávkování $x škodlivé účinky $7 D019380
- 650 12
- $a vysoce aktivní antiretrovirová terapie $x škodlivé účinky $7 D023241
- 650 _2
- $a biometrie $7 D001699
- 650 _2
- $a CD4-pozitivní T-lymfocyty $x účinky léků $x imunologie $x virologie $7 D015496
- 650 _2
- $a klinické zkoušky jako téma $x statistika a číselné údaje $7 D002986
- 650 _2
- $a vztah mezi dávkou a účinkem léčiva $7 D004305
- 650 _2
- $a monitorování léčiv $x statistika a číselné údaje $7 D016903
- 650 _2
- $a HIV infekce $x farmakoterapie $x imunologie $x virologie $7 D015658
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a modely imunologické $7 D018448
- 650 12
- $a statistické modely $7 D015233
- 650 _2
- $a virová nálož $x účinky léků $7 D019562
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Commenges, Daniel $u -
- 700 1_
- $a Drylewicz, Julia $u -
- 700 1_
- $a Thiébaut, Rodolphe $u -
- 773 0_
- $w MED00000765 $t Biometrics $x 1541-0420 $g Roč. 68, č. 3 (2012), s. 902-11
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22934714 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130404 $b ABA008
- 991 __
- $a 20130415094335 $b ABA008
- 999 __
- $a ok $b bmc $g 975703 $s 810786
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 68 $c 3 $d 902-11 $i 1541-0420 $m Biometrics $n Biometrics $x MED00000765
- LZP __
- $a Pubmed-20130404