• Je něco špatně v tomto záznamu ?

The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition

R. Kaňa, E. Kotabová, O. Komárek, B. Sedivá, GC. Papageorgiou, . Govindjee, O. Prášil,

. 2012 ; 1817 (8) : 1237-47.

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13012737

In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinus PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13012737
003      
CZ-PrNML
005      
20130409100143.0
007      
ta
008      
130404s2012 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2012.02.024 $2 doi
035    __
$a (PubMed)22402228
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Kaňa, Radek $u Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic. kana@alga.cz
245    14
$a The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition / $c R. Kaňa, E. Kotabová, O. Komárek, B. Sedivá, GC. Papageorgiou, . Govindjee, O. Prášil,
520    9_
$a In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinus PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
650    _2
$a sinice $x chemie $7 D000458
650    _2
$a fluorescence $7 D005453
650    _2
$a Synechocystis $x chemie $7 D046939
650    _2
$a teplota $7 D013696
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kotabová, Eva $u -
700    1_
$a Komárek, Ondřej $u -
700    1_
$a Sedivá, Barbora $u -
700    1_
$a Papageorgiou, George C $u -
700    1_
$a Govindjee, $u -
700    1_
$a Prášil, Ondřej $u -
773    0_
$w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1817, č. 8 (2012), s. 1237-47
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22402228 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130404 $b ABA008
991    __
$a 20130409100411 $b ABA008
999    __
$a ok $b bmc $g 975935 $s 811018
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 1817 $c 8 $d 1237-47 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
LZP    __
$a Pubmed-20130404

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...