-
Je něco špatně v tomto záznamu ?
Prediction of DNA-binding proteins from relational features
A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
BioMedCentral
od 2003-12-01
BioMedCentral Open Access
od 2003
Directory of Open Access Journals
od 2003
Free Medical Journals
od 2003
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2003-01-01
Open Access Digital Library
od 2003-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2003
Springer Nature OA/Free Journals
od 2003-12-01
PubMed
23146001
DOI
10.1186/1477-5956-10-66
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
UNLABELLED: BACKGROUND: The process of protein-DNA binding has an essential role in the biological processing of genetic information. We use relational machine learning to predict DNA-binding propensity of proteins from their structures. Automatically discovered structural features are able to capture some characteristic spatial configurations of amino acids in proteins. RESULTS: Prediction based only on structural relational features already achieves competitive results to existing methods based on physicochemical properties on several protein datasets. Predictive performance is further improved when structural features are combined with physicochemical features. Moreover, the structural features provide some insights not revealed by physicochemical features. Our method is able to detect common spatial substructures. We demonstrate this in experiments with zinc finger proteins. CONCLUSIONS: We introduced a novel approach for DNA-binding propensity prediction using relational machine learning which could potentially be used also for protein function prediction in general.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13016025
- 003
- CZ-PrNML
- 005
- 20130510092640.0
- 007
- ta
- 008
- 130424s2012 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/1477-5956-10-66 $2 doi
- 035 __
- $a (PubMed)23146001
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Szabóová, Andrea $u Czech Technical University, Prague, Czech Republic. szaboand@fel.cvut.cz.
- 245 10
- $a Prediction of DNA-binding proteins from relational features / $c A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,
- 520 9_
- $a UNLABELLED: BACKGROUND: The process of protein-DNA binding has an essential role in the biological processing of genetic information. We use relational machine learning to predict DNA-binding propensity of proteins from their structures. Automatically discovered structural features are able to capture some characteristic spatial configurations of amino acids in proteins. RESULTS: Prediction based only on structural relational features already achieves competitive results to existing methods based on physicochemical properties on several protein datasets. Predictive performance is further improved when structural features are combined with physicochemical features. Moreover, the structural features provide some insights not revealed by physicochemical features. Our method is able to detect common spatial substructures. We demonstrate this in experiments with zinc finger proteins. CONCLUSIONS: We introduced a novel approach for DNA-binding propensity prediction using relational machine learning which could potentially be used also for protein function prediction in general.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kuželka, Ondřej $u -
- 700 1_
- $a Zelezný, Filip $u -
- 700 1_
- $a Tolar, Jakub $u -
- 773 0_
- $w MED00008250 $t Proteome science $x 1477-5956 $g Roč. 10, č. 1 (2012), s. 66
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23146001 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130424 $b ABA008
- 991 __
- $a 20130510092946 $b ABA008
- 999 __
- $a ind $b bmc $g 979226 $s 814346
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 10 $c 1 $d 66 $i 1477-5956 $m Proteome science $n Proteome Sci $x MED00008250
- LZP __
- $a Pubmed-20130424