• Je něco špatně v tomto záznamu ?

Prediction of DNA-binding proteins from relational features

A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,

. 2012 ; 10 (1) : 66.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc13016025

UNLABELLED: BACKGROUND: The process of protein-DNA binding has an essential role in the biological processing of genetic information. We use relational machine learning to predict DNA-binding propensity of proteins from their structures. Automatically discovered structural features are able to capture some characteristic spatial configurations of amino acids in proteins. RESULTS: Prediction based only on structural relational features already achieves competitive results to existing methods based on physicochemical properties on several protein datasets. Predictive performance is further improved when structural features are combined with physicochemical features. Moreover, the structural features provide some insights not revealed by physicochemical features. Our method is able to detect common spatial substructures. We demonstrate this in experiments with zinc finger proteins. CONCLUSIONS: We introduced a novel approach for DNA-binding propensity prediction using relational machine learning which could potentially be used also for protein function prediction in general.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13016025
003      
CZ-PrNML
005      
20130510092640.0
007      
ta
008      
130424s2012 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/1477-5956-10-66 $2 doi
035    __
$a (PubMed)23146001
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Szabóová, Andrea $u Czech Technical University, Prague, Czech Republic. szaboand@fel.cvut.cz.
245    10
$a Prediction of DNA-binding proteins from relational features / $c A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,
520    9_
$a UNLABELLED: BACKGROUND: The process of protein-DNA binding has an essential role in the biological processing of genetic information. We use relational machine learning to predict DNA-binding propensity of proteins from their structures. Automatically discovered structural features are able to capture some characteristic spatial configurations of amino acids in proteins. RESULTS: Prediction based only on structural relational features already achieves competitive results to existing methods based on physicochemical properties on several protein datasets. Predictive performance is further improved when structural features are combined with physicochemical features. Moreover, the structural features provide some insights not revealed by physicochemical features. Our method is able to detect common spatial substructures. We demonstrate this in experiments with zinc finger proteins. CONCLUSIONS: We introduced a novel approach for DNA-binding propensity prediction using relational machine learning which could potentially be used also for protein function prediction in general.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kuželka, Ondřej $u -
700    1_
$a Zelezný, Filip $u -
700    1_
$a Tolar, Jakub $u -
773    0_
$w MED00008250 $t Proteome science $x 1477-5956 $g Roč. 10, č. 1 (2012), s. 66
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23146001 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130424 $b ABA008
991    __
$a 20130510092946 $b ABA008
999    __
$a ind $b bmc $g 979226 $s 814346
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 10 $c 1 $d 66 $i 1477-5956 $m Proteome science $n Proteome Sci $x MED00008250
LZP    __
$a Pubmed-20130424

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace