-
Je něco špatně v tomto záznamu ?
Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search
A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
BioMedCentral
od 2000-12-01
BioMedCentral Open Access
od 2000
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-07-01
Medline Complete (EBSCOhost)
od 2000-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
Springer Nature OA/Free Journals
od 2000-12-01
- MeSH
- algoritmy MeSH
- aminokyseliny analýza MeSH
- DNA analýza MeSH
- metoda Monte Carlo MeSH
- proteiny analýza MeSH
- sekundární struktura proteinů MeSH
- teoretické modely MeSH
- vazba proteinů MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We contribute a novel, ball-histogram approach to DNA-binding propensity prediction of proteins. Unlike state-of-the-art methods based on constructing an ad-hoc set of features describing physicochemical properties of the proteins, the ball-histogram technique enables a systematic, Monte-Carlo exploration of the spatial distribution of amino acids complying with automatically selected properties. This exploration yields a model for the prediction of DNA binding propensity. We validate our method in prediction experiments, improving on state-of-the-art accuracies. Moreover, our method also provides interpretable features involving spatial distributions of selected amino acids.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13024384
- 003
- CZ-PrNML
- 005
- 20130708093257.0
- 007
- ta
- 008
- 130703s2012 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/1471-2105-13-S10-S3 $2 doi
- 035 __
- $a (PubMed)22759427
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Szabóová, Andrea $u Czech Technical University, Department of Cybernetics, Prague, 166 27, Czech Republic. szaboand@fel.cvut.cz
- 245 10
- $a Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search / $c A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,
- 520 9_
- $a We contribute a novel, ball-histogram approach to DNA-binding propensity prediction of proteins. Unlike state-of-the-art methods based on constructing an ad-hoc set of features describing physicochemical properties of the proteins, the ball-histogram technique enables a systematic, Monte-Carlo exploration of the spatial distribution of amino acids complying with automatically selected properties. This exploration yields a model for the prediction of DNA binding propensity. We validate our method in prediction experiments, improving on state-of-the-art accuracies. Moreover, our method also provides interpretable features involving spatial distributions of selected amino acids.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a aminokyseliny $x analýza $7 D000596
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a DNA $x analýza $7 D004247
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a metoda Monte Carlo $7 D009010
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a proteiny $x analýza $7 D011506
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kuželka, Ondřej $u -
- 700 1_
- $a Zelezný, Filip $u -
- 700 1_
- $a Tolar, Jakub $u -
- 773 0_
- $w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 13 Suppl 10(2012), s. S3
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22759427 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130708093719 $b ABA008
- 999 __
- $a ok $b bmc $g 988064 $s 822764
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 13 Suppl 10 $d S3 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
- LZP __
- $a Pubmed-20130703