• Je něco špatně v tomto záznamu ?

Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search

A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,

. 2012 ; 13 Suppl 10 () : S3.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13024384

We contribute a novel, ball-histogram approach to DNA-binding propensity prediction of proteins. Unlike state-of-the-art methods based on constructing an ad-hoc set of features describing physicochemical properties of the proteins, the ball-histogram technique enables a systematic, Monte-Carlo exploration of the spatial distribution of amino acids complying with automatically selected properties. This exploration yields a model for the prediction of DNA binding propensity. We validate our method in prediction experiments, improving on state-of-the-art accuracies. Moreover, our method also provides interpretable features involving spatial distributions of selected amino acids.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13024384
003      
CZ-PrNML
005      
20130708093257.0
007      
ta
008      
130703s2012 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/1471-2105-13-S10-S3 $2 doi
035    __
$a (PubMed)22759427
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Szabóová, Andrea $u Czech Technical University, Department of Cybernetics, Prague, 166 27, Czech Republic. szaboand@fel.cvut.cz
245    10
$a Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search / $c A. Szabóová, O. Kuželka, F. Zelezný, J. Tolar,
520    9_
$a We contribute a novel, ball-histogram approach to DNA-binding propensity prediction of proteins. Unlike state-of-the-art methods based on constructing an ad-hoc set of features describing physicochemical properties of the proteins, the ball-histogram technique enables a systematic, Monte-Carlo exploration of the spatial distribution of amino acids complying with automatically selected properties. This exploration yields a model for the prediction of DNA binding propensity. We validate our method in prediction experiments, improving on state-of-the-art accuracies. Moreover, our method also provides interpretable features involving spatial distributions of selected amino acids.
650    _2
$a algoritmy $7 D000465
650    _2
$a aminokyseliny $x analýza $7 D000596
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a DNA $x analýza $7 D004247
650    _2
$a teoretické modely $7 D008962
650    _2
$a metoda Monte Carlo $7 D009010
650    _2
$a vazba proteinů $7 D011485
650    _2
$a sekundární struktura proteinů $7 D017433
650    _2
$a proteiny $x analýza $7 D011506
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kuželka, Ondřej $u -
700    1_
$a Zelezný, Filip $u -
700    1_
$a Tolar, Jakub $u -
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 13 Suppl 10(2012), s. S3
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22759427 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130703 $b ABA008
991    __
$a 20130708093719 $b ABA008
999    __
$a ok $b bmc $g 988064 $s 822764
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 13 Suppl 10 $d S3 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
LZP    __
$a Pubmed-20130703

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...