-
Je něco špatně v tomto záznamu ?
Restarted local search algorithms for continuous black box optimization
P. Pošík, W. Huyer,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
22779407
DOI
10.1162/evco_a_00087
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- benchmarking * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13024387
- 003
- CZ-PrNML
- 005
- 20130708112610.0
- 007
- ta
- 008
- 130703s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1162/EVCO_a_00087 $2 doi
- 035 __
- $a (PubMed)22779407
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Pošík, Petr $u Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic. posik@labe.felk.cvut.cz
- 245 10
- $a Restarted local search algorithms for continuous black box optimization / $c P. Pošík, W. Huyer,
- 520 9_
- $a Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method.
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a benchmarking $7 D019985
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Huyer, Waltraud $u -
- 773 0_
- $w MED00007225 $t Evolutionary computation $x 1530-9304 $g Roč. 20, č. 4 (2012), s. 575-607
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22779407 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130708113031 $b ABA008
- 999 __
- $a ok $b bmc $g 988067 $s 822767
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 20 $c 4 $d 575-607 $i 1530-9304 $m Evolutionary computation $n Evol Comput $x MED00007225
- LZP __
- $a Pubmed-20130703