Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Restarted local search algorithms for continuous black box optimization

P. Pošík, W. Huyer,

. 2012 ; 20 (4) : 575-607.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13024387

Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13024387
003      
CZ-PrNML
005      
20130708112610.0
007      
ta
008      
130703s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1162/EVCO_a_00087 $2 doi
035    __
$a (PubMed)22779407
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pošík, Petr $u Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic. posik@labe.felk.cvut.cz
245    10
$a Restarted local search algorithms for continuous black box optimization / $c P. Pošík, W. Huyer,
520    9_
$a Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method.
650    12
$a algoritmy $7 D000465
650    12
$a benchmarking $7 D019985
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Huyer, Waltraud $u -
773    0_
$w MED00007225 $t Evolutionary computation $x 1530-9304 $g Roč. 20, č. 4 (2012), s. 575-607
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22779407 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130703 $b ABA008
991    __
$a 20130708113031 $b ABA008
999    __
$a ok $b bmc $g 988067 $s 822767
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 20 $c 4 $d 575-607 $i 1530-9304 $m Evolutionary computation $n Evol Comput $x MED00007225
LZP    __
$a Pubmed-20130703

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...