Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Predicting the electron requirement for carbon fixation in seas and oceans

E. Lawrenz, G. Silsbe, E. Capuzzo, P. Ylöstalo, RM. Forster, SG. Simis, O. Prášil, JC. Kromkamp, AE. Hickman, CM. Moore, MH. Forget, RJ. Geider, DJ. Suggett,

. 2013 ; 8 (3) : e58137.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13031525

Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and (14)C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e(-) (mol C)(-1) with a mean of 10.9 ± 6.91 mol e(-) mol C)(-1). Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φ e,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φ e,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φ e,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φ e,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13031525
003      
CZ-PrNML
005      
20131002114611.0
007      
ta
008      
131002s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0058137 $2 doi
035    __
$a (PubMed)23516441
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lawrenz, Evelyn $u Laboratory of Photosynthesis, Institute of Microbiology, ASCR (Academy of Sciences of the Czech Republic), Opatovický mlýn, Třeboň, Czech Republic. lawrenz@alga.cz
245    10
$a Predicting the electron requirement for carbon fixation in seas and oceans / $c E. Lawrenz, G. Silsbe, E. Capuzzo, P. Ylöstalo, RM. Forster, SG. Simis, O. Prášil, JC. Kromkamp, AE. Hickman, CM. Moore, MH. Forget, RJ. Geider, DJ. Suggett,
520    9_
$a Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and (14)C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e(-) (mol C)(-1) with a mean of 10.9 ± 6.91 mol e(-) mol C)(-1). Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φ e,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φ e,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φ e,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φ e,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy.
650    _2
$a Bacteria $x metabolismus $7 D001419
650    12
$a koloběh uhlíku $7 D057486
650    _2
$a ekosystém $7 D017753
650    12
$a elektrony $7 D004583
650    _2
$a životní prostředí $7 D004777
650    _2
$a zeměpis $7 D005843
650    _2
$a dusičnany $x chemie $7 D009566
650    _2
$a fytoplankton $x metabolismus $7 D010839
650    _2
$a mořská voda $x chemie $x mikrobiologie $7 D012623
650    _2
$a časoprostorová analýza $7 D062211
655    _2
$a časopisecké články $7 D016428
655    _2
$a metaanalýza $7 D017418
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Silsbe, Greg $u -
700    1_
$a Capuzzo, Elisa $u -
700    1_
$a Ylöstalo, Pasi $u -
700    1_
$a Forster, Rodney M $u -
700    1_
$a Simis, Stefan G H $u -
700    1_
$a Prášil, Ondřej $u -
700    1_
$a Kromkamp, Jacco C $u -
700    1_
$a Hickman, Anna E $u -
700    1_
$a Moore, C Mark $u -
700    1_
$a Forget, Marie-Hélèn $u -
700    1_
$a Geider, Richard J $u -
700    1_
$a Suggett, David J $u -
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 8, č. 3 (2013), s. e58137
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23516441 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20131002 $b ABA008
991    __
$a 20131002115128 $b ABA008
999    __
$a ok $b bmc $g 995612 $s 829970
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 8 $c 3 $d e58137 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20131002

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...