• Je něco špatně v tomto záznamu ?

Using of normalizations for gene expression analysis

P. Bubelíny,

. 2013 ; 972 () : 73-83.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc13031642

Normalizations of gene expression data are commonly used in practice. They are used for removing systematic variation which affects the measure of gene expression levels. But one can object to the using of normalized data for testing hypotheses. By using normalized data, tests can break nominal level of multiple testing on which we would like to test the hypotheses. It could bring a lot of false positives, which we would like to prevent. In this chapter, by simulating data with similar correlation structure as real data, we try to find out how quantile, global, and δ-sequence normalizations hold the nominal level of Bonferroni multiple testing procedure.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13031642
003      
CZ-PrNML
005      
20131008095945.0
007      
ta
008      
131002s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/978-1-60327-337-4_5 $2 doi
035    __
$a (PubMed)23385532
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bubelíny, Peter $u Department of Probability and Statistics, Charles University, Prague, Czech Republic. Bubeliny@seznam.cz
245    10
$a Using of normalizations for gene expression analysis / $c P. Bubelíny,
520    9_
$a Normalizations of gene expression data are commonly used in practice. They are used for removing systematic variation which affects the measure of gene expression levels. But one can object to the using of normalized data for testing hypotheses. By using normalized data, tests can break nominal level of multiple testing on which we would like to test the hypotheses. It could bring a lot of false positives, which we would like to prevent. In this chapter, by simulating data with similar correlation structure as real data, we try to find out how quantile, global, and δ-sequence normalizations hold the nominal level of Bonferroni multiple testing procedure.
650    _2
$a algoritmy $7 D000465
650    _2
$a počítačová simulace $7 D003198
650    12
$a interpretace statistických dat $7 D003627
650    _2
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a lidé $7 D006801
650    _2
$a statistické modely $7 D015233
650    _2
$a normální rozdělení $7 D016011
650    _2
$a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x metody $7 D020411
655    _2
$a časopisecké články $7 D016428
773    0_
$w MED00180389 $t Methods in molecular biology (Clifton, N.J.) $x 1940-6029 $g Roč. 972(2013), s. 73-83
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23385532 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20131002 $b ABA008
991    __
$a 20131008100507 $b ABA008
999    __
$a ok $b bmc $g 995729 $s 830087
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 972 $d 73-83 $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
LZP    __
$a Pubmed-20131002

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...