-
Je něco špatně v tomto záznamu ?
Using of normalizations for gene expression analysis
P. Bubelíny,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- algoritmy MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- normální rozdělení MeSH
- počítačová simulace MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- stanovení celkové genové exprese metody MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Normalizations of gene expression data are commonly used in practice. They are used for removing systematic variation which affects the measure of gene expression levels. But one can object to the using of normalized data for testing hypotheses. By using normalized data, tests can break nominal level of multiple testing on which we would like to test the hypotheses. It could bring a lot of false positives, which we would like to prevent. In this chapter, by simulating data with similar correlation structure as real data, we try to find out how quantile, global, and δ-sequence normalizations hold the nominal level of Bonferroni multiple testing procedure.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13031642
- 003
- CZ-PrNML
- 005
- 20131008095945.0
- 007
- ta
- 008
- 131002s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/978-1-60327-337-4_5 $2 doi
- 035 __
- $a (PubMed)23385532
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bubelíny, Peter $u Department of Probability and Statistics, Charles University, Prague, Czech Republic. Bubeliny@seznam.cz
- 245 10
- $a Using of normalizations for gene expression analysis / $c P. Bubelíny,
- 520 9_
- $a Normalizations of gene expression data are commonly used in practice. They are used for removing systematic variation which affects the measure of gene expression levels. But one can object to the using of normalized data for testing hypotheses. By using normalized data, tests can break nominal level of multiple testing on which we would like to test the hypotheses. It could bring a lot of false positives, which we would like to prevent. In this chapter, by simulating data with similar correlation structure as real data, we try to find out how quantile, global, and δ-sequence normalizations hold the nominal level of Bonferroni multiple testing procedure.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a počítačová simulace $7 D003198
- 650 12
- $a interpretace statistických dat $7 D003627
- 650 _2
- $a stanovení celkové genové exprese $x metody $7 D020869
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a normální rozdělení $7 D016011
- 650 _2
- $a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x metody $7 D020411
- 655 _2
- $a časopisecké články $7 D016428
- 773 0_
- $w MED00180389 $t Methods in molecular biology (Clifton, N.J.) $x 1940-6029 $g Roč. 972(2013), s. 73-83
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23385532 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20131002 $b ABA008
- 991 __
- $a 20131008100507 $b ABA008
- 999 __
- $a ok $b bmc $g 995729 $s 830087
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 972 $d 73-83 $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
- LZP __
- $a Pubmed-20131002