-
Je něco špatně v tomto záznamu ?
Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum
L. Kubienová, D. Kopečný, M. Tylichová, P. Briozzo, J. Skopalová, M. Šebela, M. Navrátil, R. Tâche, L. Luhová, JB. Barroso, M. Petřivalský,
Jazyk angličtina Země Francie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aldehydoxidoreduktasy chemie genetika metabolismus MeSH
- apoenzymy chemie genetika metabolismus MeSH
- glutathion metabolismus MeSH
- katalytická doména MeSH
- klonování DNA MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- NAD metabolismus MeSH
- oxidace-redukce MeSH
- regulace genové exprese u rostlin MeSH
- sekvence aminokyselin MeSH
- Solanum lycopersicum enzymologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD(+) as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD(+), the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD(+) and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13031747
- 003
- CZ-PrNML
- 005
- 20131003100420.0
- 007
- ta
- 008
- 131002s2013 fr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biochi.2012.12.009 $2 doi
- 035 __
- $a (PubMed)23274177
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a fr
- 100 1_
- $a Kubienová, Lucie $u Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
- 245 10
- $a Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum / $c L. Kubienová, D. Kopečný, M. Tylichová, P. Briozzo, J. Skopalová, M. Šebela, M. Navrátil, R. Tâche, L. Luhová, JB. Barroso, M. Petřivalský,
- 520 9_
- $a S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD(+) as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD(+), the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD(+) and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids.
- 650 _2
- $a aldehydoxidoreduktasy $x chemie $x genetika $x metabolismus $7 D000445
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a apoenzymy $x chemie $x genetika $x metabolismus $7 D001051
- 650 _2
- $a katalytická doména $7 D020134
- 650 _2
- $a klonování DNA $7 D003001
- 650 _2
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a glutathion $x metabolismus $7 D005978
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a Solanum lycopersicum $x enzymologie $x genetika $7 D018551
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a NAD $x metabolismus $7 D009243
- 650 _2
- $a oxidace-redukce $7 D010084
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kopečný, David $u -
- 700 1_
- $a Tylichová, Martina $u -
- 700 1_
- $a Briozzo, Pierre $u -
- 700 1_
- $a Skopalová, Jana $u -
- 700 1_
- $a Šebela, Marek $u -
- 700 1_
- $a Navrátil, Milan $u -
- 700 1_
- $a Tâche, Roselyne $u -
- 700 1_
- $a Luhová, Lenka $u -
- 700 1_
- $a Barroso, Juan B $u -
- 700 1_
- $a Petřivalský, Marek $u -
- 773 0_
- $w MED00009325 $t Biochimie $x 1638-6183 $g Roč. 95, č. 4 (2013), s. 889-902
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23274177 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20131002 $b ABA008
- 991 __
- $a 20131003100938 $b ABA008
- 999 __
- $a ok $b bmc $g 995834 $s 830192
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 95 $c 4 $d 889-902 $i 1638-6183 $m Biochimie $n Biochimie $x MED00009325
- LZP __
- $a Pubmed-20131002