-
Je něco špatně v tomto záznamu ?
Shrinkage approach for gene expression data analysis
Jirí Haman, Zdenek Valenta
Jazyk angličtina Země Česko Médium elektronický zdroj
Typ dokumentu práce podpořená grantem
- MeSH
- exprese genu * genetika MeSH
- lidé MeSH
- mikročipová analýza * metody statistika a číselné údaje MeSH
- RNA * genetika MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Background: Microarray technologies are used to measure the simultaneous expression of a certain set of thousands of genes based on ribonucleic acid (RNA) obtained from a biological sample. We are interested in several statistical analyses such as 1) finding differentially expressed genes between or among several experimental groups, 2) finding a small number of genes allowing for the correct classification of a sample in a certain group, and 3) finding relations among genes. Objectives: Gene expression data are high dimensional, and this fact complicates their analysis because we are able to perform only a few samples (e.g. the peripheral blood from a limited number of patients) for a certain set of thousands of genes. The main purpose of this paper is to present the shrinkage estimator and show its application in different statistical analyses. Methods: The shrinkage approach relates to the shift of a certain value of a classic estimator towards a certain value of a specified target estimator. More precisely, the shrinkage estimator is the weighted average of the classic estimator and the target estimator. Results: The benefit of the shrinkage estimator is that it improves the mean squared error (MSE) as compared to a classic estimator. The MSE combines the measure of an estimator’s bias away from its true unknown value and the measure of the estimator’s variability. The shrinkage estimator is a biased estimator but has a lower variability. Conclusions: The shrinkage estimator can be considered as a promising estimator for analyzing high dimensional gene expression data.
Shrinkage approach for gene expression data analysis [elektronický zdroj] /
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040334
- 003
- CZ-PrNML
- 005
- 20140203222250.0
- 007
- cr|cn|
- 008
- 140106s2013 xr a fs 000 0eng||
- 009
- eAR
- 024 7_
- $a 10.24105/ejbi.2013.09.3.2 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Haman, Jiří $7 _AN076125 $u Institute of Computer Science AS CR, v. v. i., Department of Medical Informatics and Biostatistics, Prague, Czech Republic; First Faculty of Medicine, Charles University in Prague, Czech Republic
- 245 10
- $a Shrinkage approach for gene expression data analysis $h [elektronický zdroj] / $c Jirí Haman, Zdenek Valenta
- 504 __
- $a Literatura
- 520 9_
- $a Background: Microarray technologies are used to measure the simultaneous expression of a certain set of thousands of genes based on ribonucleic acid (RNA) obtained from a biological sample. We are interested in several statistical analyses such as 1) finding differentially expressed genes between or among several experimental groups, 2) finding a small number of genes allowing for the correct classification of a sample in a certain group, and 3) finding relations among genes. Objectives: Gene expression data are high dimensional, and this fact complicates their analysis because we are able to perform only a few samples (e.g. the peripheral blood from a limited number of patients) for a certain set of thousands of genes. The main purpose of this paper is to present the shrinkage estimator and show its application in different statistical analyses. Methods: The shrinkage approach relates to the shift of a certain value of a classic estimator towards a certain value of a specified target estimator. More precisely, the shrinkage estimator is the weighted average of the classic estimator and the target estimator. Results: The benefit of the shrinkage estimator is that it improves the mean squared error (MSE) as compared to a classic estimator. The MSE combines the measure of an estimator’s bias away from its true unknown value and the measure of the estimator’s variability. The shrinkage estimator is a biased estimator but has a lower variability. Conclusions: The shrinkage estimator can be considered as a promising estimator for analyzing high dimensional gene expression data.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a exprese genu $x genetika $7 D015870
- 650 12
- $a RNA $x genetika $7 D012313
- 650 12
- $a mikročipová analýza $x metody $x statistika a číselné údaje $7 D046228
- 650 _2
- $a statistické modely $7 D015233
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Valenta, Zdeněk, $d 1955- $7 xx0074213 $u Institute of Computer Science AS CR, v. v. i., Department of Medical Informatics and Biostatistics, Prague, Czech Republic
- 773 0_
- $t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 3 (2013), s. 2-8 $w MED00173462
- 856 41
- $u http://www.ejbi.org/img/ejbi/2013/3/Haman_en.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $z 0 $y 4
- 990 __
- $a 20140105160254 $b ABA008
- 991 __
- $a 20140203223028 $b ABA008
- 999 __
- $a ok $b bmc $g 1004741 $s 838839
- BAS __
- $a 3 $a 4
- BMC __
- $a 2013 $b 9 $c 3 $d 2-8 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
- LZP __
- $c NLK185 $d 20140203 $a NLK 2014-03/vt