-
Je něco špatně v tomto záznamu ?
Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations
P. Stadlbauer, M. Krepl, TE. Cheatham, J. Koca, J. Sponer,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
23700306
DOI
10.1093/nar/gkt412
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- jednovláknová DNA chemie MeSH
- lidé MeSH
- simulace molekulární dynamiky * MeSH
- telomery chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Explicit solvent molecular dynamics simulations have been used to complement preceding experimental and computational studies of folding of guanine quadruplexes (G-DNA). We initiate early stages of unfolding of several G-DNAs by simulating them under no-salt conditions and then try to fold them back using standard excess salt simulations. There is a significant difference between G-DNAs with all-anti parallel stranded stems and those with stems containing mixtures of syn and anti guanosines. The most natural rearrangement for all-anti stems is a vertical mutual slippage of the strands. This leads to stems with reduced numbers of tetrads during unfolding and a reduction of strand slippage during refolding. The presence of syn nucleotides prevents mutual strand slippage; therefore, the antiparallel and hybrid quadruplexes initiate unfolding via separation of the individual strands. The simulations confirm the capability of G-DNA molecules to adopt numerous stable locally and globally misfolded structures. The key point for a proper individual folding attempt appears to be correct prior distribution of syn and anti nucleotides in all four G-strands. The results suggest that at the level of individual molecules, G-DNA folding is an extremely multi-pathway process that is slowed by numerous misfolding arrangements stabilized on highly variable timescales.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040728
- 003
- CZ-PrNML
- 005
- 20140114105236.0
- 007
- ta
- 008
- 140107s2013 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkt412 $2 doi
- 035 __
- $a (PubMed)23700306
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Stadlbauer, Petr
- 245 10
- $a Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations / $c P. Stadlbauer, M. Krepl, TE. Cheatham, J. Koca, J. Sponer,
- 520 9_
- $a Explicit solvent molecular dynamics simulations have been used to complement preceding experimental and computational studies of folding of guanine quadruplexes (G-DNA). We initiate early stages of unfolding of several G-DNAs by simulating them under no-salt conditions and then try to fold them back using standard excess salt simulations. There is a significant difference between G-DNAs with all-anti parallel stranded stems and those with stems containing mixtures of syn and anti guanosines. The most natural rearrangement for all-anti stems is a vertical mutual slippage of the strands. This leads to stems with reduced numbers of tetrads during unfolding and a reduction of strand slippage during refolding. The presence of syn nucleotides prevents mutual strand slippage; therefore, the antiparallel and hybrid quadruplexes initiate unfolding via separation of the individual strands. The simulations confirm the capability of G-DNA molecules to adopt numerous stable locally and globally misfolded structures. The key point for a proper individual folding attempt appears to be correct prior distribution of syn and anti nucleotides in all four G-strands. The results suggest that at the level of individual molecules, G-DNA folding is an extremely multi-pathway process that is slowed by numerous misfolding arrangements stabilized on highly variable timescales.
- 650 _2
- $a DNA $x chemie $7 D004247
- 650 _2
- $a jednovláknová DNA $x chemie $7 D004277
- 650 12
- $a G-kvadruplexy $7 D054856
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a telomery $x chemie $7 D016615
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Krepl, Miroslav $u -
- 700 1_
- $a Cheatham, Thomas E $u -
- 700 1_
- $a Koca, Jaroslav $u -
- 700 1_
- $a Sponer, Jirí $u -
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 41, č. 14 (2013), s. 7128-43
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23700306 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140107 $b ABA008
- 991 __
- $a 20140114105940 $b ABA008
- 999 __
- $a ok $b bmc $g 1005124 $s 839240
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 41 $c 14 $d 7128-43 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20140107