-
Je něco špatně v tomto záznamu ?
Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation
M. Bíl, R. Andrášik, Z. Janoška,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- dopravní nehody statistika a číselné údaje MeSH
- lidé MeSH
- metoda Monte Carlo MeSH
- shluková analýza MeSH
- životní prostředí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
This paper proposes a procedure which evaluates clusters of traffic accident and organizes them according to their significance. The standard kernel density estimation was extended by statistical significance testing of the resulting clusters of the traffic accidents. This allowed us to identify the most important clusters within each section. They represent places where the kernel density function exceeds the significance level corresponding to the 95th percentile level, which is estimated using the Monte Carlo simulations. To show only the most important clusters within a set of sections, we introduced the cluster strength and cluster stability evaluation procedures. The method was applied in the Southern Moravia Region of the Czech Republic.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040829
- 003
- CZ-PrNML
- 005
- 20180530075853.0
- 007
- ta
- 008
- 140107s2013 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.aap.2013.03.003 $2 doi
- 035 __
- $a (PubMed)23567216
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Bíl, Michal
- 245 10
- $a Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation / $c M. Bíl, R. Andrášik, Z. Janoška,
- 520 9_
- $a This paper proposes a procedure which evaluates clusters of traffic accident and organizes them according to their significance. The standard kernel density estimation was extended by statistical significance testing of the resulting clusters of the traffic accidents. This allowed us to identify the most important clusters within each section. They represent places where the kernel density function exceeds the significance level corresponding to the 95th percentile level, which is estimated using the Monte Carlo simulations. To show only the most important clusters within a set of sections, we introduced the cluster strength and cluster stability evaluation procedures. The method was applied in the Southern Moravia Region of the Czech Republic.
- 650 _2
- $a dopravní nehody $x statistika a číselné údaje $7 D000063
- 650 _2
- $a shluková analýza $7 D016000
- 650 12
- $a životní prostředí $7 D004777
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a metoda Monte Carlo $7 D009010
- 651 _2
- $a Česká republika $7 D018153
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Andrášik, Richard, $d 1988- $7 mzk2016923209
- 700 1_
- $a Janoška, Zbyněk $u -
- 773 0_
- $w MED00008540 $t Accident; analysis and prevention $x 1879-2057 $g Roč. 55, č. - (2013), s. 265-73
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23567216 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140107 $b ABA008
- 991 __
- $a 20180530080047 $b ABA008
- 999 __
- $a ok $b bmc $g 1005225 $s 839341
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 55 $c - $d 265-73 $i 1879-2057 $m Accident analysis and prevention $n Accid Anal Prev $x MED00008540
- LZP __
- $a Pubmed-20140107