-
Something wrong with this record ?
Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by Reverse Line Blot Hybridization
J. Jezbera, J. Jezberová, V. Kasalický, K. Šimek, MW. Hahn,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2006
Free Medical Journals
from 2006
Public Library of Science (PLoS)
from 2006
PubMed Central
from 2006
Europe PubMed Central
from 2006
ProQuest Central
from 2006-12-01
Open Access Digital Library
from 2006-10-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-01-01
Medline Complete (EBSCOhost)
from 2008-01-01
Nursing & Allied Health Database (ProQuest)
from 2006-12-01
Health & Medicine (ProQuest)
from 2006-12-01
Public Health Database (ProQuest)
from 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
from 2006
- MeSH
- RNA, Bacterial genetics MeSH
- Biodiversity * MeSH
- Comamonadaceae physiology MeSH
- Adaptation, Physiological physiology MeSH
- In Situ Hybridization, Fluorescence MeSH
- Hydrogen-Ion Concentration MeSH
- Water Microbiology * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Fresh Water microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria. Instead, our observations suggest that the genus Limnohabitans, as well as its R-BT subgroup, represent ecologically heterogeneous taxa, which underwent pronounced ecological diversification.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040848
- 003
- CZ-PrNML
- 005
- 20140107130156.0
- 007
- ta
- 008
- 140107s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0058527 $2 doi
- 035 __
- $a (PubMed)23554898
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jezbera, Jan
- 245 10
- $a Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by Reverse Line Blot Hybridization / $c J. Jezbera, J. Jezberová, V. Kasalický, K. Šimek, MW. Hahn,
- 520 9_
- $a Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria. Instead, our observations suggest that the genus Limnohabitans, as well as its R-BT subgroup, represent ecologically heterogeneous taxa, which underwent pronounced ecological diversification.
- 650 _2
- $a fyziologická adaptace $x fyziologie $7 D000222
- 650 12
- $a biodiverzita $7 D044822
- 650 _2
- $a Comamonadaceae $x fyziologie $7 D042621
- 650 _2
- $a sladká voda $x mikrobiologie $7 D005618
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a hybridizace in situ fluorescenční $7 D017404
- 650 _2
- $a bakteriální RNA $x genetika $7 D012329
- 650 _2
- $a RNA ribozomální 16S $x genetika $7 D012336
- 650 12
- $a mikrobiologie vody $7 D014871
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jezberová, Jitka $u -
- 700 1_
- $a Kasalický, Vojtěch $u -
- 700 1_
- $a Šimek, Karel $u -
- 700 1_
- $a Hahn, Martin W $u -
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 8, č. 3 (2013), s. e58527
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23554898 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140107 $b ABA008
- 991 __
- $a 20140107130856 $b ABA008
- 999 __
- $a ok $b bmc $g 1005244 $s 839360
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 8 $c 3 $d e58527 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20140107