-
Je něco špatně v tomto záznamu ?
Life on magnets: stem cell networking on micro-magnet arrays
V. Zablotskii, A. Dejneka, Š. Kubinová, D. Le-Roy, F. Dumas-Bouchiat, D. Givord, NM. Dempsey, E. Syková,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- buněčná adheze MeSH
- časové faktory MeSH
- čipová analýza tkání metody MeSH
- krysa rodu rattus MeSH
- kultivační média chemie MeSH
- magnetické pole MeSH
- magnety * MeSH
- mezenchymální kmenové buňky cytologie MeSH
- nanočástice MeSH
- pohyb buněk MeSH
- potkani Wistar MeSH
- viabilita buněk MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14050857
- 003
- CZ-PrNML
- 005
- 20140402111619.0
- 007
- ta
- 008
- 140401s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0070416 $2 doi
- 035 __
- $a (PubMed)23936425
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zablotskii, Vitalii
- 245 10
- $a Life on magnets: stem cell networking on micro-magnet arrays / $c V. Zablotskii, A. Dejneka, Š. Kubinová, D. Le-Roy, F. Dumas-Bouchiat, D. Givord, NM. Dempsey, E. Syková,
- 520 9_
- $a Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a pohyb buněk $7 D002465
- 650 _2
- $a viabilita buněk $7 D002470
- 650 _2
- $a kultivační média $x chemie $7 D003470
- 650 _2
- $a železité sloučeniny $x chemie $7 D005290
- 650 _2
- $a magnetické pole $7 D060526
- 650 12
- $a magnety $7 D059346
- 650 _2
- $a mezenchymální kmenové buňky $x cytologie $7 D059630
- 650 _2
- $a nanočástice $7 D053758
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a čipová analýza tkání $x metody $7 D046888
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dejneka, Alexandr $u -
- 700 1_
- $a Kubinová, Šárka $u -
- 700 1_
- $a Le-Roy, Damien $u -
- 700 1_
- $a Dumas-Bouchiat, Frédéric $u -
- 700 1_
- $a Givord, Dominique $u -
- 700 1_
- $a Dempsey, Nora M $u -
- 700 1_
- $a Syková, Eva $u -
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 8, č. 8 (2013), s. e70416
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23936425 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140401 $b ABA008
- 991 __
- $a 20140402111659 $b ABA008
- 999 __
- $a ok $b bmc $g 1017993 $s 849437
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 8 $c 8 $d e70416 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20140401