-
Something wrong with this record ?
Intracerebrally recorded high frequency oscillations: simple visual assessment versus automated detection
M. Pail, J. Halámek, P. Daniel, R. Kuba, I. Tyrlíková, J. Chrastina, P. Jurák, I. Rektor, M. Brázdil,
Language English Country Netherlands
Document type Comparative Study, Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Adult MeSH
- Electrodes MeSH
- Electroencephalography instrumentation methods MeSH
- Epilepsies, Partial diagnosis MeSH
- Hippocampus MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Cerebral Cortex MeSH
- Signal Processing, Computer-Assisted MeSH
- Reproducibility of Results MeSH
- Seizures diagnosis MeSH
- Data Display * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
OBJECTIVE: We compared the possible contribution (in the detection of seizure onset zone - SOZ) of simple visual assessment of intracerebrally recorded high-frequency oscillations (HFO) with standard automated detection. METHODS: We analyzed stereo-EEG (SEEG) recordings from 20 patients with medically intractable partial seizures (10 temporal/10 extratemporal). Independently using simple visual assessment and automated detection of HFO, we identified the depth electrode contacts with maximum occurrences of ripples (R) and fast ripples (FR). The SOZ was determined by independent visual identification in standard SEEG recordings, and the congruence of results from visual versus automated HFO detection was compared. RESULTS: Automated detection of HFO correctly identified the SOZ in 14 (R)/10 (FR) out of 20 subjects; a simple visual assessment of SEEG recordings in the appropriate frequency ranges correctly identified the SOZ in 13 (R)/9 (FR) subjects. CONCLUSIONS: Simple visual assessment of SEEG traces and standard automated detection of HFO seem to contribute comparably to the identification of the SOZ in patients with focal epilepsies. When using macroelectrodes in neocortical extratemporal epilepsies, the SOZ might be better determined by the ripple range. SIGNIFICANCE: Standard automated detection of HFO enables the evaluation of HFO characteristics in whole data. This detection allows general purpose and objective evaluation, without any bias from the neurophysiologist's experiences and practice.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14051051
- 003
- CZ-PrNML
- 005
- 20140410124140.0
- 007
- ta
- 008
- 140401s2013 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.clinph.2013.03.032 $2 doi
- 035 __
- $a (PubMed)23706814
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Pail, Martin
- 245 10
- $a Intracerebrally recorded high frequency oscillations: simple visual assessment versus automated detection / $c M. Pail, J. Halámek, P. Daniel, R. Kuba, I. Tyrlíková, J. Chrastina, P. Jurák, I. Rektor, M. Brázdil,
- 520 9_
- $a OBJECTIVE: We compared the possible contribution (in the detection of seizure onset zone - SOZ) of simple visual assessment of intracerebrally recorded high-frequency oscillations (HFO) with standard automated detection. METHODS: We analyzed stereo-EEG (SEEG) recordings from 20 patients with medically intractable partial seizures (10 temporal/10 extratemporal). Independently using simple visual assessment and automated detection of HFO, we identified the depth electrode contacts with maximum occurrences of ripples (R) and fast ripples (FR). The SOZ was determined by independent visual identification in standard SEEG recordings, and the congruence of results from visual versus automated HFO detection was compared. RESULTS: Automated detection of HFO correctly identified the SOZ in 14 (R)/10 (FR) out of 20 subjects; a simple visual assessment of SEEG recordings in the appropriate frequency ranges correctly identified the SOZ in 13 (R)/9 (FR) subjects. CONCLUSIONS: Simple visual assessment of SEEG traces and standard automated detection of HFO seem to contribute comparably to the identification of the SOZ in patients with focal epilepsies. When using macroelectrodes in neocortical extratemporal epilepsies, the SOZ might be better determined by the ripple range. SIGNIFICANCE: Standard automated detection of HFO enables the evaluation of HFO characteristics in whole data. This detection allows general purpose and objective evaluation, without any bias from the neurophysiologist's experiences and practice.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a mozková kůra $7 D002540
- 650 12
- $a zobrazování dat $7 D003626
- 650 _2
- $a elektrody $7 D004566
- 650 _2
- $a elektroencefalografie $x přístrojové vybavení $x metody $7 D004569
- 650 _2
- $a epilepsie parciální $x diagnóza $7 D004828
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a hipokampus $7 D006624
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a záchvaty $x diagnóza $7 D012640
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Halámek, Josef $u -
- 700 1_
- $a Daniel, Pavel $u -
- 700 1_
- $a Kuba, Robert $u -
- 700 1_
- $a Tyrlíková, Ivana $u -
- 700 1_
- $a Chrastina, Jan $u -
- 700 1_
- $a Jurák, Pavel $u -
- 700 1_
- $a Rektor, Ivan $u -
- 700 1_
- $a Brázdil, Milan $u -
- 773 0_
- $w MED00005214 $t Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology $x 1872-8952 $g Roč. 124, č. 10 (2013), s. 1935-42
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23706814 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140401 $b ABA008
- 991 __
- $a 20140410124229 $b ABA008
- 999 __
- $a ok $b bmc $g 1018187 $s 849631
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 124 $c 10 $d 1935-42 $i 1872-8952 $m Clinical neurophysiology $n Clin Neurophysiol $x MED00005214
- LZP __
- $a Pubmed-20140401