-
Je něco špatně v tomto záznamu ?
Monte Carlo simulation of PET images for injection dose optimization
J. Boldyš, J. Dvořák, M. Skopalová, O. Bělohlávek,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23281273
DOI
10.1002/cnm.2527
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- dávka záření * MeSH
- fantomy radiodiagnostické MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- metoda Monte Carlo * MeSH
- počítačová rentgenová tomografie MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu MeSH
- pozitronová emisní tomografie metody MeSH
- radioaktivní indikátory MeSH
- trup fyziologie radiografie MeSH
- velikost těla fyziologie MeSH
- výpočet dávky léku * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
When a patient is examined by positron emission tomography (PET), radiotracer dose amount (activity) has to be determined. However, the rules for activity correction according to patients' weight used nowadays do not correspond with practical experience. Very high image quality is achieved for slim patients, whereas noisy images are produced for obese patients. There is opportunity to modify the correction rule with the aim to equalize image quality within the broad spectrum of patients and to diminish radiation risk to slim patients, with special importance for children. We have built a model of a particular PET scanner and approximated human trunk, which is our region of interest, by a cylindrical model with segments of liver, outer adipose tissue, and the rest. We have performed Monte Carlo simulations of PET imaging using the GATE simulation package. Under reasonably simplifying assumptions and for special parameters, we have developed curves that recommend amount of injected activity based on body parameters to give PET images of constant quality, the quality being expressed in terms of noise equivalent counts. The dependence qualitatively differs from the rules used in clinical practice nowadays, and the results indicate potential for improvement.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14051210
- 003
- CZ-PrNML
- 005
- 20140612125002.0
- 007
- ta
- 008
- 140401s2013 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/cnm.2527 $2 doi
- 035 __
- $a (PubMed)23281273
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Boldyš, Jiří
- 245 10
- $a Monte Carlo simulation of PET images for injection dose optimization / $c J. Boldyš, J. Dvořák, M. Skopalová, O. Bělohlávek,
- 520 9_
- $a When a patient is examined by positron emission tomography (PET), radiotracer dose amount (activity) has to be determined. However, the rules for activity correction according to patients' weight used nowadays do not correspond with practical experience. Very high image quality is achieved for slim patients, whereas noisy images are produced for obese patients. There is opportunity to modify the correction rule with the aim to equalize image quality within the broad spectrum of patients and to diminish radiation risk to slim patients, with special importance for children. We have built a model of a particular PET scanner and approximated human trunk, which is our region of interest, by a cylindrical model with segments of liver, outer adipose tissue, and the rest. We have performed Monte Carlo simulations of PET imaging using the GATE simulation package. Under reasonably simplifying assumptions and for special parameters, we have developed curves that recommend amount of injected activity based on body parameters to give PET images of constant quality, the quality being expressed in terms of noise equivalent counts. The dependence qualitatively differs from the rules used in clinical practice nowadays, and the results indicate potential for improvement.
- 650 _2
- $a index tělesné hmotnosti $7 D015992
- 650 _2
- $a velikost těla $x fyziologie $7 D049628
- 650 _2
- $a počítačová simulace $7 D003198
- 650 12
- $a výpočet dávky léku $7 D054796
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a biologické modely $7 D008954
- 650 12
- $a metoda Monte Carlo $7 D009010
- 650 _2
- $a fantomy radiodiagnostické $7 D019047
- 650 _2
- $a pozitronová emisní tomografie $x metody $7 D049268
- 650 12
- $a dávka záření $7 D011829
- 650 _2
- $a radioaktivní indikátory $7 D011849
- 650 _2
- $a počítačová rentgenová tomografie $7 D014057
- 650 _2
- $a trup $x fyziologie $x radiografie $7 D060726
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dvořák, Jiří $u -
- 700 1_
- $a Skopalová, Magdaléna $u -
- 700 1_
- $a Bělohlávek, Otakar $u -
- 773 0_
- $w MED00184043 $t International journal for numerical methods in biomedical engineering $x 2040-7947 $g Roč. 29, č. 9 (2013), s. 988-99
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23281273 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140401 $b ABA008
- 991 __
- $a 20140612125202 $b ABA008
- 999 __
- $a ok $b bmc $g 1018346 $s 849790
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 29 $c 9 $d 988-99 $i 2040-7947 $m International journal for numerical methods in biomedical engineering $n Int j numer method biomed eng $x MED00184043
- LZP __
- $a Pubmed-20140401