Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Cycle-time and residence-time density approximations in a stochastic model for circulatory transport

Charles E. Smith, Petr Lánský, Te-Hsin Lung

. 1997 ; 59 (1) : 1-22.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14060184

Grantová podpora
IZ4034 MZ0 CEP - Centrální evidence projektů

Digitální knihovna NLK
Plný text - Část
Zdroj

E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do 2019-01-31
Health & Medicine (ProQuest) od 1997-01-01 do 2019-01-31

The concentration of a drug in the circulatory system is studied under two different elimination strategies. The first strategy--geometric elimination--is the classical one which assumes a constant elimination rate per cycle. The second strategy--Poisson elimination--assumes that the elimination rate changes during the process of elimination. The problem studied here is to find a relationship between the residence-time distribution and the cycle-time distribution for a given rule of elimination. While the presented model gives this relationship in terms of Laplace-Stieltjes transform., the aim here is to determine the shapes of the corresponding probability density functions. From experimental data, we expect positively skewed, gamma-like distributions for the residence time of the drug in the body. Also, as some elimination parameter in the model approaches a limit, the exponential distribution often arises. Therefore, we use Laguerre series expansions, which yield a parsimonious approximation of positively skewed probability densities that are close to a gamma distribution. The coefficients in the expansion are determined by the central moments, which can be obtained from experimental data or as a consequence of theoretical assumptions. The examples presented show that gamma-like densities arise for a diverse set of cycle-time distribution and under both elimination rules.

000      
00000naa a2200000 a 4500
001      
bmc14060184
003      
CZ-PrNML
005      
20170904145254.0
007      
ta
008      
140602s1997 xxud f 000 0|eng||
009      
AR
035    __
$a (PubMed)8980303
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xxu
100    1_
$a Smith, Charles E., $d 1956- $7 xx0203897 $u Department of Statistics, North Carolina State University, Raleigh 27695-8203, USA. cesmith@stat.ncsu.edu
245    10
$a Cycle-time and residence-time density approximations in a stochastic model for circulatory transport / $c Charles E. Smith, Petr Lánský, Te-Hsin Lung
520    9_
$a The concentration of a drug in the circulatory system is studied under two different elimination strategies. The first strategy--geometric elimination--is the classical one which assumes a constant elimination rate per cycle. The second strategy--Poisson elimination--assumes that the elimination rate changes during the process of elimination. The problem studied here is to find a relationship between the residence-time distribution and the cycle-time distribution for a given rule of elimination. While the presented model gives this relationship in terms of Laplace-Stieltjes transform., the aim here is to determine the shapes of the corresponding probability density functions. From experimental data, we expect positively skewed, gamma-like distributions for the residence time of the drug in the body. Also, as some elimination parameter in the model approaches a limit, the exponential distribution often arises. Therefore, we use Laguerre series expansions, which yield a parsimonious approximation of positively skewed probability densities that are close to a gamma distribution. The coefficients in the expansion are determined by the central moments, which can be obtained from experimental data or as a consequence of theoretical assumptions. The examples presented show that gamma-like densities arise for a diverse set of cycle-time distribution and under both elimination rules.
590    __
$a bohemika - dle Pubmed
650    02
$a lidé $7 D006801
650    02
$a matematika $7 D008433
650    02
$a metabolická clearance $7 D008657
650    12
$a biologické modely $7 D008954
650    12
$a farmakokinetika $7 D010599
650    02
$a stochastické procesy $7 D013269
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lánský, Petr $7 xx0062306 $u Institute of Physiology and Center for Theoretical Study, Academy of Sciences of the Czech Republic, Prague, Czech Republic
700    1_
$a Lung, Te-Hsin $u Department of Statistics, North Carolina State University, Raleigh, USA
773    0_
$t Bulletin of Mathematical Biology $x 0092-8240 $g Roč. 59, č. 1 (1997), s. 1-22 $p Bull Math Biol $w MED00000927
910    __
$a ABA008 $y 4 $z 0
990    __
$a 20140602175543 $b ABA008
991    __
$a 20170904145849 $b ABA008
999    __
$a ok $b bmc $g 1027237 $s 858829
BAS    __
$a 3
BMC    __
$a 1997 $b 59 $c 1 $d 1-22 $i 0092-8240 $m Bulletin of mathematical biology $x MED00000927 $n Bull Math Biol
GRA    __
$a IZ4034 $p MZ0
LZP    __
$a 2014-05/abbo

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...