-
Something wrong with this record ?
Restoration of retinal images with space-variant blur
AG. Marrugo, MS. Millán, M. Sorel, F. Sroubek,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
PubMed Central
from 2009
Europe PubMed Central
from 2009 to 1 year ago
ROAD: Directory of Open Access Scholarly Resources
from 1998
- MeSH
- Algorithms MeSH
- Angiography methods MeSH
- Artifacts MeSH
- Astigmatism diagnosis MeSH
- Diagnostic Techniques, Ophthalmological * MeSH
- Fundus Oculi MeSH
- Humans MeSH
- Normal Distribution MeSH
- Optics and Photonics MeSH
- Image Processing, Computer-Assisted MeSH
- Reproducibility of Results MeSH
- Retina pathology MeSH
- Retinal Vessels pathology MeSH
- Pattern Recognition, Automated methods MeSH
- Models, Statistical MeSH
- Vision, Ocular MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration method was tested on artificially and naturally degraded retinal images. The results show an important enhancement, significant enough to leverage the images' clinical use.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14074304
- 003
- CZ-PrNML
- 005
- 20141008100810.0
- 007
- ta
- 008
- 141006s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1117/1.JBO.19.1.016023 $2 doi
- 035 __
- $a (PubMed)24474509
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Marrugo, Andrés G $u Universitat Politècnica de Catalunya, Department of Optics and Optometry, Group of Applied Optics and Image Processing, Violinista Vellsolà 37, 08222 Terrassa, SpainbUniversidad Tecnológica de Bolívar, Facultad de Ciencias Básicas, Km 1 vía Turbaco, Carta.
- 245 10
- $a Restoration of retinal images with space-variant blur / $c AG. Marrugo, MS. Millán, M. Sorel, F. Sroubek,
- 520 9_
- $a Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration method was tested on artificially and naturally degraded retinal images. The results show an important enhancement, significant enough to leverage the images' clinical use.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a angiografie $x metody $7 D000792
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a astigmatismus $x diagnóza $7 D001251
- 650 12
- $a diagnostické techniky oftalmologické $7 D003941
- 650 _2
- $a fundus oculi $7 D005654
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a normální rozdělení $7 D016011
- 650 _2
- $a optika a fotonika $7 D055095
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a retina $x patologie $7 D012160
- 650 _2
- $a retinální cévy $x patologie $7 D012171
- 650 _2
- $a zrak $7 D014785
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Millán, María S $u Universitat Politècnica de Catalunya, Department of Optics and Optometry, Group of Applied Optics and Image Processing, Violinista Vellsolà 37, 08222 Terrassa, Spain.
- 700 1_
- $a Sorel, Michal $u Academy of Sciences of the Czech Republic, Institute of Information Theory and Automation, Pod Vodárenskou veží 4, 18208 Prague 8, Czech Republic.
- 700 1_
- $a Sroubek, Filip $u Academy of Sciences of the Czech Republic, Institute of Information Theory and Automation, Pod Vodárenskou veží 4, 18208 Prague 8, Czech Republic.
- 773 0_
- $w MED00180283 $t Journal of biomedical optics $x 1560-2281 $g Roč. 19, č. 1 (2014), s. 16023
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24474509 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141006 $b ABA008
- 991 __
- $a 20141008101158 $b ABA008
- 999 __
- $a ok $b bmc $g 1042187 $s 873216
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 19 $c 1 $d 16023 $i 1560-2281 $m Journal of biomedical optics $n J Biomed Opt $x MED00180283
- LZP __
- $a Pubmed-20141006