-
Je něco špatně v tomto záznamu ?
Biosensing enhancement using passive mixing structures for microarray-based sensors
NS. Lynn, JI. Martínez-López, M. Bocková, P. Adam, V. Coello, HR. Siller, J. Homola,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- design vybavení MeSH
- difuze MeSH
- jednovláknová DNA analýza MeSH
- mikročipová analýza přístrojové vybavení MeSH
- mikrofluidní analytické techniky přístrojové vybavení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The combination of microarray technologies with microfluidic sample delivery and real-time detection methods has the capability to simultaneously monitor 10-1000 s of biomolecular interactions in a single experiment. Despite the benefits that microfluidic systems provide, they typically operate in the laminar flow regime under mass transfer limitations, where large analyte depletion layers act as a resistance to analyte capture. By locally stirring the fluid and delivering fresh analyte to the capture spot, the use of passive mixing structures in a microarray environment can reduce the negative effects of these depletion layers and enhance the sensor performance. Despite their large potential, little attention has been given to the integration of these mixing structures in microarray sensing environments. In this study, we use passive mixing structures to enhance the mass transfer of analyte to a capture spot within a microfluidic flow cell. Using numerical methods, different structure shapes and heights were evaluated as means to increase local fluid velocities, and in turn, rates of mass transfer to a capture spot. These results were verified experimentally via the real-time detection of 20-mer ssDNA for an array of microspots. Both numerical and experimental results showed that a passive mixing structure situated directly over the capture spot can significantly enhance the binding rate of analyte to the sensing surface. Moreover, we show that these structures can be used to enhance mass transfer in experiments regarding an array of capture spots. The results of this study can be applied to any experimental system using microfluidic sample delivery methods for microarray detection techniques.
Institute of Photonics and Electronics Chaberská 57 18251 Prague Czech Republic
Tecnológico de Monterrey Eugenio Garza Sada 2501 Sur C P 64849 Monterrey N L México
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14074424
- 003
- CZ-PrNML
- 005
- 20141007111605.0
- 007
- ta
- 008
- 141006s2014 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bios.2013.11.027 $2 doi
- 035 __
- $a (PubMed)24321884
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Lynn, N Scott $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic.
- 245 10
- $a Biosensing enhancement using passive mixing structures for microarray-based sensors / $c NS. Lynn, JI. Martínez-López, M. Bocková, P. Adam, V. Coello, HR. Siller, J. Homola,
- 520 9_
- $a The combination of microarray technologies with microfluidic sample delivery and real-time detection methods has the capability to simultaneously monitor 10-1000 s of biomolecular interactions in a single experiment. Despite the benefits that microfluidic systems provide, they typically operate in the laminar flow regime under mass transfer limitations, where large analyte depletion layers act as a resistance to analyte capture. By locally stirring the fluid and delivering fresh analyte to the capture spot, the use of passive mixing structures in a microarray environment can reduce the negative effects of these depletion layers and enhance the sensor performance. Despite their large potential, little attention has been given to the integration of these mixing structures in microarray sensing environments. In this study, we use passive mixing structures to enhance the mass transfer of analyte to a capture spot within a microfluidic flow cell. Using numerical methods, different structure shapes and heights were evaluated as means to increase local fluid velocities, and in turn, rates of mass transfer to a capture spot. These results were verified experimentally via the real-time detection of 20-mer ssDNA for an array of microspots. Both numerical and experimental results showed that a passive mixing structure situated directly over the capture spot can significantly enhance the binding rate of analyte to the sensing surface. Moreover, we show that these structures can be used to enhance mass transfer in experiments regarding an array of capture spots. The results of this study can be applied to any experimental system using microfluidic sample delivery methods for microarray detection techniques.
- 650 _2
- $a biosenzitivní techniky $x přístrojové vybavení $7 D015374
- 650 _2
- $a jednovláknová DNA $x analýza $7 D004277
- 650 _2
- $a difuze $7 D004058
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a mikročipová analýza $x přístrojové vybavení $7 D046228
- 650 _2
- $a mikrofluidní analytické techniky $x přístrojové vybavení $7 D046210
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Martínez-López, José-Israel $u Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México. Electronic address: israel@null.net.
- 700 1_
- $a Bocková, Markéta $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Adam, Pavel $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic. $7 gn_A_00001119
- 700 1_
- $a Coello, Victor $u Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Alianza Sur No. 105, Nueva Carretera Aeropuerto Km 9.5, Apodaca 66629, N.L., México. Electronic address: vcoello@cicese.mx.
- 700 1_
- $a Siller, Héctor R $u Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México. Electronic address: hector.siller@itesm.mx.
- 700 1_
- $a Homola, Jiří $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic. Electronic address: homola@ufe.cz.
- 773 0_
- $w MED00006627 $t Biosensors & bioelectronics $x 1873-4235 $g Roč. 54, č. - (2014), s. 506-14
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24321884 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141006 $b ABA008
- 991 __
- $a 20141007112043 $b ABA008
- 999 __
- $a ok $b bmc $g 1042307 $s 873336
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 54 $c - $d 506-14 $i 1873-4235 $m Biosensors & bioelectronics $n Biosens Bioelectron $x MED00006627
- LZP __
- $a Pubmed-20141006