• Je něco špatně v tomto záznamu ?

Biosensing enhancement using passive mixing structures for microarray-based sensors

NS. Lynn, JI. Martínez-López, M. Bocková, P. Adam, V. Coello, HR. Siller, J. Homola,

. 2014 ; 54 (-) : 506-14.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14074424

The combination of microarray technologies with microfluidic sample delivery and real-time detection methods has the capability to simultaneously monitor 10-1000 s of biomolecular interactions in a single experiment. Despite the benefits that microfluidic systems provide, they typically operate in the laminar flow regime under mass transfer limitations, where large analyte depletion layers act as a resistance to analyte capture. By locally stirring the fluid and delivering fresh analyte to the capture spot, the use of passive mixing structures in a microarray environment can reduce the negative effects of these depletion layers and enhance the sensor performance. Despite their large potential, little attention has been given to the integration of these mixing structures in microarray sensing environments. In this study, we use passive mixing structures to enhance the mass transfer of analyte to a capture spot within a microfluidic flow cell. Using numerical methods, different structure shapes and heights were evaluated as means to increase local fluid velocities, and in turn, rates of mass transfer to a capture spot. These results were verified experimentally via the real-time detection of 20-mer ssDNA for an array of microspots. Both numerical and experimental results showed that a passive mixing structure situated directly over the capture spot can significantly enhance the binding rate of analyte to the sensing surface. Moreover, we show that these structures can be used to enhance mass transfer in experiments regarding an array of capture spots. The results of this study can be applied to any experimental system using microfluidic sample delivery methods for microarray detection techniques.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074424
003      
CZ-PrNML
005      
20141007111605.0
007      
ta
008      
141006s2014 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bios.2013.11.027 $2 doi
035    __
$a (PubMed)24321884
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Lynn, N Scott $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic.
245    10
$a Biosensing enhancement using passive mixing structures for microarray-based sensors / $c NS. Lynn, JI. Martínez-López, M. Bocková, P. Adam, V. Coello, HR. Siller, J. Homola,
520    9_
$a The combination of microarray technologies with microfluidic sample delivery and real-time detection methods has the capability to simultaneously monitor 10-1000 s of biomolecular interactions in a single experiment. Despite the benefits that microfluidic systems provide, they typically operate in the laminar flow regime under mass transfer limitations, where large analyte depletion layers act as a resistance to analyte capture. By locally stirring the fluid and delivering fresh analyte to the capture spot, the use of passive mixing structures in a microarray environment can reduce the negative effects of these depletion layers and enhance the sensor performance. Despite their large potential, little attention has been given to the integration of these mixing structures in microarray sensing environments. In this study, we use passive mixing structures to enhance the mass transfer of analyte to a capture spot within a microfluidic flow cell. Using numerical methods, different structure shapes and heights were evaluated as means to increase local fluid velocities, and in turn, rates of mass transfer to a capture spot. These results were verified experimentally via the real-time detection of 20-mer ssDNA for an array of microspots. Both numerical and experimental results showed that a passive mixing structure situated directly over the capture spot can significantly enhance the binding rate of analyte to the sensing surface. Moreover, we show that these structures can be used to enhance mass transfer in experiments regarding an array of capture spots. The results of this study can be applied to any experimental system using microfluidic sample delivery methods for microarray detection techniques.
650    _2
$a biosenzitivní techniky $x přístrojové vybavení $7 D015374
650    _2
$a jednovláknová DNA $x analýza $7 D004277
650    _2
$a difuze $7 D004058
650    _2
$a design vybavení $7 D004867
650    _2
$a mikročipová analýza $x přístrojové vybavení $7 D046228
650    _2
$a mikrofluidní analytické techniky $x přístrojové vybavení $7 D046210
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Martínez-López, José-Israel $u Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México. Electronic address: israel@null.net.
700    1_
$a Bocková, Markéta $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic.
700    1_
$a Adam, Pavel $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic. $7 gn_A_00001119
700    1_
$a Coello, Victor $u Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Alianza Sur No. 105, Nueva Carretera Aeropuerto Km 9.5, Apodaca 66629, N.L., México. Electronic address: vcoello@cicese.mx.
700    1_
$a Siller, Héctor R $u Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México. Electronic address: hector.siller@itesm.mx.
700    1_
$a Homola, Jiří $u Institute of Photonics and Electronics, Chaberská 57, 18251 Prague, Czech Republic. Electronic address: homola@ufe.cz.
773    0_
$w MED00006627 $t Biosensors & bioelectronics $x 1873-4235 $g Roč. 54, č. - (2014), s. 506-14
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24321884 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141007112043 $b ABA008
999    __
$a ok $b bmc $g 1042307 $s 873336
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 54 $c - $d 506-14 $i 1873-4235 $m Biosensors & bioelectronics $n Biosens Bioelectron $x MED00006627
LZP    __
$a Pubmed-20141006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...