Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Diffusion approximation of neuronal models revisited

J. Cupera,

. 2014 ; 11 (1) : 11-25.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Leaky integrate-and-fire neuronal models with reversal potentials have a number of different diffusion approximations, each depending on the form of the amplitudes of the postsynaptic potentials. Probability distributions of the first-passage times of the membrane potential in the original model and its diffusion approximations are numerically compared in order to find which of the approximations is the most suitable one. The properties of the random amplitudes of postsynaptic potentials are discussed. It is shown on a simple example that the quality of the approximation depends directly on them.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074506
003      
CZ-PrNML
005      
20141112094123.0
007      
ta
008      
141006s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.3934/mbe.2014.11.11 $2 doi
035    __
$a (PubMed)24245676
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cupera, Jakub $u Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. xcupera@mail.muni.cz.
245    10
$a Diffusion approximation of neuronal models revisited / $c J. Cupera,
520    9_
$a Leaky integrate-and-fire neuronal models with reversal potentials have a number of different diffusion approximations, each depending on the form of the amplitudes of the postsynaptic potentials. Probability distributions of the first-passage times of the membrane potential in the original model and its diffusion approximations are numerically compared in order to find which of the approximations is the most suitable one. The properties of the random amplitudes of postsynaptic potentials are discussed. It is shown on a simple example that the quality of the approximation depends directly on them.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a počítačová simulace $7 D003198
650    _2
$a difuze $7 D004058
650    _2
$a lidé $7 D006801
650    _2
$a matematika $7 D008433
650    _2
$a membránové potenciály $x fyziologie $7 D008564
650    12
$a modely neurologické $7 D008959
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a normální rozdělení $7 D016011
650    _2
$a Poissonovo rozdělení $7 D016012
650    _2
$a pravděpodobnost $7 D011336
650    _2
$a stochastické procesy $7 D013269
650    _2
$a synaptické potenciály $7 D055366
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
773    0_
$w MED00184839 $t Mathematical biosciences and engineering : MBE $x 1551-0018 $g Roč. 11, č. 1 (2014), s. 11-25
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24245676 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141112094137 $b ABA008
999    __
$a ok $b bmc $g 1042389 $s 873418
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 11 $c 1 $d 11-25 $i 1551-0018 $m Mathematical biosciences and engineering $n Math Biosci Eng $x MED00184839
LZP    __
$a Pubmed-20141006

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...