-
Something wrong with this record ?
Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides
M. Kopecná, H. Blaschke, D. Kopecny, A. Vigouroux, R. Koncitíková, O. Novák, O. Kotland, M. Strnad, S. Moréra, K. von Schwartzenberg,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1926 to 1 year ago
Open Access Digital Library
from 1926-01-01
PubMed
24170203
DOI
10.1104/pp.113.228775
Knihovny.cz E-resources
- MeSH
- Biocatalysis * drug effects MeSH
- Cytokinins chemistry metabolism MeSH
- Nitrogen pharmacology MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Gene Knockout Techniques MeSH
- Hydrolysis drug effects MeSH
- Kinetics MeSH
- Crystallography, X-Ray MeSH
- Zea mays drug effects enzymology genetics MeSH
- Bryopsida drug effects enzymology genetics growth & development MeSH
- Models, Molecular MeSH
- Molecular Sequence Data MeSH
- Mutagenesis, Site-Directed MeSH
- Mutant Proteins chemistry metabolism MeSH
- N-Glycosyl Hydrolases chemistry genetics metabolism MeSH
- Pyrimidines chemistry metabolism MeSH
- Ribonucleosides chemistry metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Substrate Specificity drug effects MeSH
- Binding Sites MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14074562
- 003
- CZ-PrNML
- 005
- 20141009120752.0
- 007
- ta
- 008
- 141006s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1104/pp.113.228775 $2 doi
- 035 __
- $a (PubMed)24170203
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kopecná, Martina $u Department of Protein Biochemistry and Proteomics, Center of the Region Haná for Biotechnological and Agricultural Research , Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic; Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-783 71 Olomouc, Czech Republic.
- 245 10
- $a Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides / $c M. Kopecná, H. Blaschke, D. Kopecny, A. Vigouroux, R. Koncitíková, O. Novák, O. Kotland, M. Strnad, S. Moréra, K. von Schwartzenberg,
- 520 9_
- $a We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a vazebná místa $7 D001665
- 650 12
- $a biokatalýza $x účinky léků $7 D055162
- 650 _2
- $a mechy $x účinky léků $x enzymologie $x genetika $x růst a vývoj $7 D019068
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a cytokininy $x chemie $x metabolismus $7 D003583
- 650 _2
- $a genový knockout $7 D055786
- 650 _2
- $a hydrolýza $x účinky léků $7 D006868
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a mutageneze cílená $7 D016297
- 650 _2
- $a mutantní proteiny $x chemie $x metabolismus $7 D050505
- 650 _2
- $a N-glykosylhydrolasy $x chemie $x genetika $x metabolismus $7 D009699
- 650 _2
- $a dusík $x farmakologie $7 D009584
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a pyrimidiny $x chemie $x metabolismus $7 D011743
- 650 _2
- $a ribonukleosidy $x chemie $x metabolismus $7 D012263
- 650 _2
- $a sekvenční seřazení $7 D016415
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 650 _2
- $a substrátová specifita $x účinky léků $7 D013379
- 650 _2
- $a kukuřice setá $x účinky léků $x enzymologie $x genetika $7 D003313
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Blaschke, Hanna
- 700 1_
- $a Kopecny, David
- 700 1_
- $a Vigouroux, Armelle
- 700 1_
- $a Koncitíková, Radka
- 700 1_
- $a Novák, Ondrej
- 700 1_
- $a Kotland, Ondrej
- 700 1_
- $a Strnad, Miroslav
- 700 1_
- $a Moréra, Solange
- 700 1_
- $a von Schwartzenberg, Klaus
- 773 0_
- $w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 163, č. 4 (2013), s. 1568-83
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24170203 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141006 $b ABA008
- 991 __
- $a 20141009121141 $b ABA008
- 999 __
- $a ok $b bmc $g 1042445 $s 873474
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 163 $c 4 $d 1568-83 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
- LZP __
- $a Pubmed-20141006