Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3 ̄, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
- MeSH
- Bacteria * metabolismus genetika klasifikace MeSH
- biodiverzita * MeSH
- biotechnologie * MeSH
- draslík metabolismus MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- mikrobiota * MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- zemědělské plodiny MeSH
- zemědělství MeSH
- živiny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.
The growth and accumulation of active ingredients of Angelica sinensis were affected by rhizosphere soil microbial communities and soil environmental factors. However, the correlationship between growth and active ingredients and soil biotic and abiotic factors is still unclear. This study explored rhizosphere soil microbial community structures, soil physicochemical properties, enzyme activities, and their effects on the growth and active ingredient contents of A. sinensis in three principal cropping areas. Results indicated that the growth indices, ligustilide, ferulic acid contents, and soil environmental factors varied in cropping areas. Pearson correlation analysis revealed that the growth of A. sinensis was affected by organic matter, total nitrogen, total phosphorus, and available phosphorus; ferulic acid and ligustilide accumulation were related to soil catalase and alkaline phosphatase activities, respectively. Illumina MiSeq sequencing showed that the genera Mortierella and Conocybe were the dominant fungal communities, and Sphingomonas, Pseudomonas, Bryobacter, and Lysobacter were the main bacterial communities associated with the rhizosphere soil. Kruskal-Wallis one-way ANOVA and Spearman correlation conjoint analysis demonstrated a significant positive correlation (p < 0.001) among the composition of the rhizosphere microbial communities at all three sampling sites. The growth and active ingredient accumulation of A. sinensis not only was significantly susceptible to the bacterial communities of Sphingomonas, Epicoccum, Marivita, Muribaculum, and Gemmatimonas but also were significantly influenced by the fungal communities of Inocybe, Septoria, Tetracladium, and Mortierella (p < 0.05). Our findings provide a scientific basis for understanding the relationship between the growth and active ingredients in A. sinensis and their corresponding rhizosphere soil microbial communities, soil physicochemical properties, and enzyme activities.
- MeSH
- Angelica sinensis * růst a vývoj chemie mikrobiologie MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- dusík analýza MeSH
- fosfor analýza MeSH
- houby klasifikace genetika izolace a purifikace MeSH
- mikrobiota * MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- rhizosféra * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
Azo dyes are used as coloring agent in textile industries at larger scale. As a result, large quantity of dye-enriched waste water is generated which subsequently poses environmental problems. Biological tool involving bacteria having azoreductase enzyme has proved to be more effective and efficient in dye effluent treatment. Current work focuses on Staphylococcus caprae (S. caprae) for degradation and decolorization of Reactive Red-195 (RR-195) azo dye. For this purpose, factors such as pH, temperature, inoculums, carbon and nitrogen sources, and dye concentrations have been optimized for maximum decolorization and degradation. S. caprae (4 mg/mL) efficiently resulted into 90% decolorization of RR-195 dye under static condition at 100 μg/mL concentration, 30 °C and pH 7.0 at a 12-h contact period. FTIR analysis has revealed the formation of new functional groups in the treated dye such as O-H stretch at 3370 cm-1, C-H band stretching at 2928 cm-1, and new band at 1608 cm-1 which specify the degradation of aromatic ring, 1382 and 1118 cm-1 represents desulfonated peaks. Biodegraded metabolites of RR-195 dye such as phenol, 3, 5-di-tert-butylphenol, and phthalic acid have been identified respectively that find industrial applications. Phytotoxicity test has shown non-toxic effects of treated dye on germination of Vigna radiata and Triticum aestivum seeds. Further, antibiotic diffusion assay has confirmed the biosafety of S. caprae.
- MeSH
- azosloučeniny * metabolismus toxicita MeSH
- barvicí látky * metabolismus MeSH
- biodegradace * MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- dusík metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- odpadní voda * mikrobiologie chemie MeSH
- průmyslový odpad MeSH
- Staphylococcus capitis metabolismus izolace a purifikace MeSH
- Staphylococcus metabolismus MeSH
- teplota MeSH
- textilie MeSH
- textilní průmysl MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq. By characterizing a systematic alanine mutant library of Hfq to identify amino acid residues that impact survival of Escherichia coli experiencing nitrogen (N) starvation, we corroborated the important role of the three RNA-binding surfaces for Hfq function. We uncovered two, previously uncharacterized, conserved residues, V22 and G34, in the hydrophobic core of Hfq, to have a profound impact on Hfq's RNA-binding activity in vivo. Transcriptome-scale analysis revealed that V22A and G34A Hfq mutants cause widespread destabilization of both sRNA classes, to the same extent as seen in bacteria devoid of Hfq. However, the alanine substitutions at these residues resulted in only modest alteration in stability and structure of Hfq. We propose that V22 and G34 have impact on Hfq function, especially critical under cellular conditions when there is an increased demand for Hfq, such as N starvation.
- MeSH
- bakteriální RNA * metabolismus genetika chemie MeSH
- dusík metabolismus MeSH
- Escherichia coli * genetika metabolismus MeSH
- hydrofobní a hydrofilní interakce * MeSH
- konzervovaná sekvence MeSH
- malá nekódující RNA * metabolismus genetika chemie MeSH
- mutace MeSH
- protein hostitelského faktoru 1 * metabolismus genetika chemie MeSH
- proteiny z Escherichia coli * metabolismus genetika chemie MeSH
- regulace genové exprese u bakterií MeSH
- stabilita RNA * genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom genetika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
The family Phyllobacteriaceae is a heterogeneous assemblage of more than 146 species of bacteria assigned to its existing 18 genera. Phylogenetic analyses have shown great phylogenetic diversity and also suggested about incorrect classification of several species that need to be reassessed for their proper phylogenetic classification. However, almost 50% of the family members belong to the genus Mesorhizobium only, of which the majority are symbiotic nitrogen fixers associated with different legumes. Other major genera are Phyllobacterium, Nitratireductor, Aquamicrobium, and Aminobacter. Nitrogen-fixing, legume nodulating members are present in Aminobacter and Phyllobacterium as well. Aquamicrobium spp. can degrade environmental pollutants, like 2,4-dichlorophenol, 4-chloro-2-methylphenol, and 4-chlorophenol. Chelativorans, Pseudaminobacter, Aquibium, and Oricola are the other genera that contain multiple species having diverse metabolic capacities, the rest being single-membered genera isolated from varied environments. In addition, heavy metal and antibiotic resistance, chemolithoautotrophy, poly-β-hydroxybutyrate storage, cellulase production, etc., are the other notable characteristics of some of the family members. In this report, we have comprehensively reviewed each of the species of the family Phyllobacteriaceae in their eco-physiological aspects and found that the family is rich with ecologically and metabolically highly diverse bacteria having great potential for human welfare and environmental clean-up.
The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.
OBJECTIVES: Justinian plague and its subsequent outbreaks were major events influencing Early Medieval Europe. One of the affected communities was the population of Saint-Doulchard in France, where plague victim burials were concentrated in a cemetery enclosure ditch. This study aimed to obtain more information about their life-histories using the tools of isotope analysis. MATERIALS AND METHODS: Dietary analysis using carbon and nitrogen isotopes was conducted on 97 individuals buried at Le Pressoir in Saint-Doulchard, with 36 of those originating from the enclosure ditch. This sample set includes all individuals analyzed for plague DNA in a previous study. Mobility analysis using strontium isotope analysis supplements the dietary study, with 47 analyzed humans. The results are supported by a reference sample set of 31 animal specimens for dietary analysis and 9 for mobility analysis. RESULTS: The dietary analysis results showed significantly different dietary behavior in individuals from the ditch burials, with better access to higher quality foods richer in animal protein. 87Sr/86Sr ratios are similar for both studied groups and indicate a shared or similar area of origin. DISCUSSION: The results suggest that the ditch burials contain an urban population from the nearby city of Bourges, which overall had a better diet than the rural population from Saint-Doulchard. It is implied that city's population might have been subjected to high mortality rates during the plague outbreak(s), which led to their interment in nearby rural cemeteries.
- MeSH
- dějiny středověku MeSH
- dieta * škodlivé účinky dějiny MeSH
- dítě MeSH
- dospělí MeSH
- hřbitovy MeSH
- izotopy dusíku * analýza MeSH
- izotopy stroncia analýza MeSH
- izotopy uhlíku * analýza MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mor * dějiny epidemiologie mortalita MeSH
- předškolní dítě MeSH
- zvířata MeSH
- Check Tag
- dějiny středověku MeSH
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Francie MeSH
Neoadjuvant chemotherapy (NAC) is the preferred treatment option in locally advanced breast cancer (BC). The administration of NAC is associated with a wide range of adverse effects. This pilot observational prospective study examined the effect of NAC using anthracycline + cyclophosphamide (AC) followed by paclitaxel (PTx) on a portfolio of 22 plasma and urinary amino acids, plasma proteins (albumin, prealbumin, transferrin), and products of nitrogen metabolism (urea, creatinine, uric acid) in plasma and urine. Plasma and 24-h urine samples were obtained from ten patients with early breast cancer (N1-3 N0-2 M0), at the following time points: before the start of NAC and during the AC/PTx treatment period (a total of 8 measurements at three-weekly intervals). Amino acids were analyzed using ion exchange chromatography. There were no significant differences in the measured parameters in plasma and urine between pre-NAC and during AC- and PTx-treatment. No trend was detected. A significant difference in the portfolio of plasma and urinary amino acids was found only in the pre-treatment period compared to the control group. Levels of eight plasma amino acids (8/22) were significantly reduced and those of nine urine amino acids were increased (9/22). Nitrogenous catabolites in plasma and urine were not indicative of increased protein catabolism during the anthracycline and taxane treatment periods. A slightly positive nitrogen balance was accompanied by an average weight gain of 3.3 kg (range 0-6 kg). The AC/PTx treatment regimen did not cause significant changes in the monitored laboratory parameters.
- MeSH
- aminokyseliny * moč krev MeSH
- antracykliny terapeutické užití aplikace a dávkování MeSH
- cyklofosfamid * terapeutické užití MeSH
- dospělí MeSH
- dusík * moč MeSH
- kreatinin moč krev MeSH
- krevní proteiny * metabolismus analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prsu * farmakoterapie krev moč MeSH
- neoadjuvantní terapie * MeSH
- paclitaxel * terapeutické užití aplikace a dávkování MeSH
- pilotní projekty MeSH
- prospektivní studie MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
Fungi harboring lignocellulolytic activity accelerate the composting process of agricultural wastes; however, using thermophilic fungal isolates for this process has been paid little attention. Moreover, exogenous nitrogen sources may differently affect fungal lignocellulolytic activity. A total of 250 thermophilic fungi were isolated from local compost and vermicompost samples. First, the isolates were qualitative assayed for ligninase and cellulase activities using Congo red (CR) and carboxymethyl cellulose (CMC) as substrates, respectively. Then, twenty superior isolates harboring higher ligninase and cellulase activities were selected and quantitatively assayed for both enzymes in basic mineral (BM) liquid medium supplemented with the relevant substrates and nitrogen sources including (NH4)2SO4 (AS), NH4NO3 (AN), urea (U), AS + U (1:1), or AN + U (1:1) with final nitrogen concentration of 0.3 g/L. The highest ligninase activities of 99.94, 89.82, 95.42, 96.25, and 98.34% of CR decolorization were recorded in isolates VC85, VC94, VC85, C145, and VC85 in the presence of AS, U, AS + U, AN, and AN + U, respectively. Mean ligninase activity of 63.75% in superior isolates was achieved in the presence of AS and ranked the highest among other N compounds. The isolates C200 and C184 exhibited the highest cellulolytic activity in the presence of AS and AN + U by 8.8 and 6.5 U/ml, respectively. Mean cellulase activity of 3.90 U/mL was achieved in AN + U and ranked the highest among other N compounds. Molecular identification of twenty superior isolates confirmed that all of them are belonging to Aspergillus fumigatus group. Focusing on the highest ligninase activity of the isolate VC85 in the presence of AS, the combination can be recommended as a potential bio-accelerator for compost production.
- MeSH
- celulasa * MeSH
- dusík MeSH
- houby MeSH
- kompostování * MeSH
- oxygenasy * MeSH
- Publikační typ
- časopisecké články MeSH