Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
- MeSH
- fluorescence MeSH
- fluorescenční barviva * metabolismus chemie MeSH
- fyziologický stres * MeSH
- mikrobiální viabilita * MeSH
- polyhydroxyalkanoáty metabolismus MeSH
- průtoková cytometrie * MeSH
- sinice metabolismus fyziologie MeSH
- Synechocystis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The alveolar-capillary interface is the key functional element of gas exchange in the human lung, and disruptions to this interface can lead to significant medical complications. However, it is currently challenging to adequately model this interface in vitro, as it requires not only the co-culture of human alveolar epithelial and endothelial cells but mainly the preparation of a biocompatible scaffold that mimics the basement membrane. This scaffold should support cell seeding from both sides, and maintain optimal cell adhesion, growth, and differentiation conditions. Our study investigates the use of polycaprolactone (PCL) nanofibers as a versatile substrate for such cell cultures, aiming to model the alveolar-capillary interface more accurately. We optimized nanofiber production parameters, utilized polyamide mesh UHELON as a mechanical support for scaffold handling, and created 3D-printed inserts for specialized co-cultures. Our findings confirm that PCL nanofibrous scaffolds are manageable and support the co-culture of diverse cell types, effectively enabling cell attachment, proliferation, and differentiation. Our research establishes a proof-of-concept model for the alveolar-capillary interface, offering significant potential for enhancing cell-based testing and advancing tissue-engineering applications that require specific nanofibrous matrices.
Pegunigalsidase alfa, a PEGylated α-galactosidase A enzyme replacement therapy (ERT) for Fabry disease, has a longer plasma half-life than other ERTs administered intravenously every 2 weeks (E2W). BRIGHT (NCT03180840) was a phase III, open-label study in adults with Fabry disease, previously treated with agalsidase alfa or beta E2W for ≥3 years, who switched to 2 mg/kg pegunigalsidase alfa every 4 weeks (E4W) for 52 weeks. Primary objective assessed safety, including number of treatment-emergent adverse events (TEAEs). Thirty patients were enrolled (24 males); 23 previously received agalsidase beta. Pegunigalsidase alfa plasma concentrations remained above the lower limit of quantification throughout the 4-week dosing interval. Thirty-three of 182 TEAEs (in 9 patients) were considered treatment-related; all were mild/moderate. No patients developed de novo anti-drug antibodies (ADAs). In the efficacy analysis (n = 29), median (inter-quartile range) eGFR change from baseline over 52 weeks was -1.9 (-5.9; 1.8) mL/min/1.73 m2 (n = 28; males [n = 22]: -2.4 [-5.2; 3.2]; females [n = 6]: -0.7 [-9.2; 2.0]). Overall, median eGFR slope was -1.9 (-8.3; 1.9) mL/min/1.73 m2/year (ADA-negative [n = 20]: -1.2 [-6.4; 2.6]; ADA-positive [n = 9]: -8.4 [-11.6; -1.0]). Lyso-Gb3 concentrations were low and stable in females, with a slight increase in males (9/24 ADA-positive). The BRIGHT study results suggest that 2 mg/kg pegunigalsidase alfa E4W is tolerated well in stable adult patients with Fabry disease. Due to the low number of patients in this study, more research is needed to demonstrate the effects of pegunigalsidase alfa given E4W. Further evidence, outside of this clinical trial, should be factored in for physicians to prolong the biweekly ERT intervals to E4W. TAKE-HOME MESSAGE: Treatment with 2 mg/kg pegunigalsidase alfa every 4 weeks could offer a new treatment option for patients with Fabry disease.
- MeSH
- alfa-galaktosidasa * aplikace a dávkování terapeutické užití MeSH
- dospělí MeSH
- enzymová substituční terapie * metody MeSH
- Fabryho nemoc * farmakoterapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- polyethylenglykoly aplikace a dávkování MeSH
- rekombinantní proteiny * aplikace a dávkování terapeutické užití MeSH
- rozvrh dávkování léků MeSH
- senioři MeSH
- sfingolipidy krev MeSH
- trihexosylceramidy krev MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
- MeSH
- Alexanderova nemoc * genetika patologie metabolismus MeSH
- astrocyty * metabolismus patologie MeSH
- buněčná diferenciace * fyziologie MeSH
- gliový fibrilární kyselý protein * metabolismus genetika MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- mutace MeSH
- nervové kmenové buňky metabolismus MeSH
- neurony metabolismus patologie MeSH
- organoidy metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Bioethanol production from lignocellulosic materials is hindered by the high costs of pretreatment and the enzymes. The present study aimed to evaluate whether co-cultivation of four selected cellulolytic fungi yields higher cellulase and xylanase activities compared to the monocultures and to investigate whether the enzymes from the co-cultures yield higher saccharification on selected plant materials without thermo-chemical pretreatment. The fungal isolates, Trichoderma reesei F118, Penicillium javanicum FS7, Talaromyces sp. F113, and Talaromyces pinophilus FM9, were grown as monocultures and binary co-cultures under submerged conditions for 7 days. The cellulase and xylanase activities of the culture filtrates were measured, and the culture filtrates were employed for the saccharification of sugarcane leaves, Guinea grass leaves, and water hyacinth stems and leaves. Total reducing sugars and individual sugars released from each plant material were quantified. The co-culture of Talaromyces sp. F113 with Penicillium javanicum FS7 and of T. reesei F118 with T. pinophilus FM9 produced significantly higher cellulase activities compared to the corresponding monocultures whereas no effect was observed on xylanase activities. Overall, the highest amounts of total reducing sugars and individual sugars were obtained from Guinea grass leaves saccharified with the co-culture of T. reesei F118 with T. pinophilus FM9, yielding 63.5% saccharification. Guinea grass leaves were found to be the most susceptible to enzymatic saccharification without pre-treatment, while water hyacinth stems and leaves were the least. Accordingly, the study suggests that fungal co-cultivation could be a promising approach for the saccharification of lignocellulosic materials for bioethanol production.
- MeSH
- celulasa * metabolismus MeSH
- endo-1,4-beta-xylanasy metabolismus MeSH
- ethanol metabolismus MeSH
- Hypocreales enzymologie metabolismus růst a vývoj MeSH
- kokultivační techniky * MeSH
- lignin * metabolismus MeSH
- listy rostlin mikrobiologie MeSH
- Penicillium * enzymologie metabolismus růst a vývoj MeSH
- Saccharum * mikrobiologie metabolismus MeSH
- Talaromyces * enzymologie metabolismus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Halophilic bacteria are extremophiles that thrive in saline environment. Their ability to withstand such harsh conditions makes them an ideal choice for industrial applications such as lignocellulosic biomass degradation. In this study, a halophilic bacterium with the ability to produce extracellular cellulases and hemicellulases, designated as Nesterenkonia sp. CL21, was isolated from mangrove sediment in Tanjung Piai National Park, Malaysia. Thus far, studies on lignocellulolytic enzymes concerning bacterial species under this genus are limited. To gain a comprehensive understanding of its lignocellulose-degrading potential, the whole genome was sequenced using the Illumina NovaSeq 6000 platform. The genome of strain CL21 was assembled into 25 contigs with 3,744,449 bp and a 69.74% GC content and was predicted to contain 3,348 coding genes. Based on taxonomy analysis, strain CL21 shares 73.8 to 82.0% average nucleotide identity with its neighbouring species, below the 95% threshold, indicating its possible status as a distinct species in Nesterenkonia genus. Through in-depth genomic mining, a total of 81 carbohydrate-active enzymes were encoded. Among these, 24 encoded genes were identified to encompass diverse cellulases (GH3), xylanases (GH10, GH11, GH43, GH51, GH127 and CE4), mannanases (GH38 and GH106) and pectinases (PL1, PL9, and PL11). The production of lignocellulolytic enzymes was tested in the presence of several substrates. This study revealed that strain CL21 can produce a diverse array of enzymes which are active at different time points. By combining experimental data with genomic information, the ability of strain CL21 to produce lignocellulolytic enzymes has been elucidated, with potential applications in biorefinery industry.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- celulasy genetika metabolismus MeSH
- fylogeneze * MeSH
- genom bakteriální * MeSH
- genomika * MeSH
- geologické sedimenty mikrobiologie MeSH
- glykosidhydrolasy * genetika metabolismus MeSH
- lignin * metabolismus MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 μm in height and 500 μm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.
- MeSH
- 3D tisk * MeSH
- aplikace kožní MeSH
- imichimod * chemie aplikace a dávkování MeSH
- jehly * MeSH
- kožní absorpce MeSH
- kůže metabolismus MeSH
- lékové transportní systémy přístrojové vybavení MeSH
- mikroinjekce přístrojové vybavení MeSH
- nanočástice * chemie aplikace a dávkování MeSH
- polyethylenglykoly chemie aplikace a dávkování MeSH
- povidon chemie MeSH
- rozpustnost * MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Temporomandibular disorders (TMDs) are conditions with multifactorial etiology and complex treatment. Among the non-invasive therapeutic possibilities for these conditions is the Front Plateau, a partial anterior plate made from colourless self-curing acrylic resin. It is a simple procedure that can be carried out in a single clinical section promoting muscle relaxation to reduce symptoms associated with TMDs. This study aims to report a prospective, consecutive, single-centric case series to evaluate the Front Plateau's effectiveness in patients with temporomandibular disorders. A questionnaire adapted from the Research Diagnostic Criteria for TMDs was used and 4 patients were treated with the Front Plateau plaque. Patients were monitored after 5 and 9 months, respectively, after starting to use the Front Plateau. Of the 4 cases listed, 2 showed significant improvement in initial signs and symptoms. Front Plateau may be a favourable treatment option for patients with TMD, if the guidelines are followed. Clinical trials on this modality should seek to minimize possible biases and limitations associated with the design of this type of research.
- MeSH
- akrylové pryskyřice terapeutické užití MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemoci temporomandibulárního kloubu * terapie diagnóza MeSH
- prospektivní studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- přehledy MeSH
Fibrilácia predsiení (FP) je najčastejšia arytmia v klinickej praxi prispievajúca k zvýšenej morbidite a mortalite. Humorálne biomarkery, ako natriuretické peptidy, troponín, aldosterón, kortizol, kopeptín a apelín, zohrávajú čoraz dôležitejšiu úlo- hu v diagnostike, predikcii prognózy a manažmente FP. Zvýšené hladiny týchto biomarkerov naznačujú nielen poruchu funkcie myokardu a remodeláciu predsiení, ale aj zápalové a prokoagulačné stavy, ktoré ovplyvňujú vývoj a komplikácie FP. Sledovanie hladín biomarkerov poskytuje hlbší náhľad na patofyziologické mechanizmy FP a môže pomôcť pri identi- fikácii pacientov so zvýšeným rizikom komplikácií, ako sú tromboembolické príhody alebo progresia ochorenia. Integrácia biomarkerov do klinickej praxe môže výrazne zlepšiť stratifikáciu rizika, umožniť personalizovanejší prístup k liečbe FP a prispieť k efektívnejšiemu monitorovaniu priebehu ochorenia. Dôkazy o spojitosti medzi biomarkermi a FP sú povzbud- zujúce, avšak sú potrebné ďalšie štúdie na potvrdenie ich klinického využitia v štandardnej starostlivosti o pacientov s týmto závažným ochorením.
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice, contributing to increased morbidity and mortality. Humoral biomarkers, such as natriuretic peptides, troponin, aldosterone, cortisol, copeptin, and apelin, are gaining importance in the diagnosis, prognosis, and management of AF. Elevated levels of these biomarkers indicate not only myocardial dysfunction and atrial remodeling but also inflammatory and procoagulant states that influence the progression and complications of AF. Monitoring biomarker levels provides deeper insight into the pathophysiological mechanisms of AF and can aid in identifying patients at higher risk of complications, such as thromboembolic events or disease progression. Integrating biomarkers into clinical practice can significantly improve risk stratification, facilitate a more personalized approach to AF treatment, and contribute to more effective disease monitoring. Evidence linking biomarkers with AF is promising; however, further studies are needed to confirm their clinical utility in standard care for patients with this serious condition.
- MeSH
- aldosteron MeSH
- apelin MeSH
- arginin vasopresin MeSH
- biologické markery MeSH
- fibrilace síní * diagnóza MeSH
- hydrokortison MeSH
- lidé MeSH
- natriuretické peptidy MeSH
- troponin krev MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations. Given the escalating prevalence of plastic particle contamination and the concomitant burden of cardiovascular disease in aging populations, understanding the interplay between mitochondria within the cardiovascular system and micro- and nanoplastic pollution assumes paramount importance. This review endeavors to elucidate the current albeit limited comprehension surrounding this complex interplay. Key words Mitochondria, Nanoplastics, Microplastics, Cardiovascular system, Endothelial function, Oxidative phosphorylation.
- MeSH
- kardiovaskulární nemoci metabolismus MeSH
- kardiovaskulární systém * metabolismus účinky léků MeSH
- lidé MeSH
- mikroplasty toxicita MeSH
- mitochondrie * metabolismus účinky léků MeSH
- nanočástice MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH