Azo dyes are used as coloring agent in textile industries at larger scale. As a result, large quantity of dye-enriched waste water is generated which subsequently poses environmental problems. Biological tool involving bacteria having azoreductase enzyme has proved to be more effective and efficient in dye effluent treatment. Current work focuses on Staphylococcus caprae (S. caprae) for degradation and decolorization of Reactive Red-195 (RR-195) azo dye. For this purpose, factors such as pH, temperature, inoculums, carbon and nitrogen sources, and dye concentrations have been optimized for maximum decolorization and degradation. S. caprae (4 mg/mL) efficiently resulted into 90% decolorization of RR-195 dye under static condition at 100 μg/mL concentration, 30 °C and pH 7.0 at a 12-h contact period. FTIR analysis has revealed the formation of new functional groups in the treated dye such as O-H stretch at 3370 cm-1, C-H band stretching at 2928 cm-1, and new band at 1608 cm-1 which specify the degradation of aromatic ring, 1382 and 1118 cm-1 represents desulfonated peaks. Biodegraded metabolites of RR-195 dye such as phenol, 3, 5-di-tert-butylphenol, and phthalic acid have been identified respectively that find industrial applications. Phytotoxicity test has shown non-toxic effects of treated dye on germination of Vigna radiata and Triticum aestivum seeds. Further, antibiotic diffusion assay has confirmed the biosafety of S. caprae.
- MeSH
- Azo Compounds * metabolism toxicity MeSH
- Coloring Agents * metabolism MeSH
- Biodegradation, Environmental * MeSH
- Water Pollutants, Chemical metabolism MeSH
- Nitrogen metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Wastewater * microbiology chemistry MeSH
- Industrial Waste MeSH
- Staphylococcus capitis metabolism isolation & purification MeSH
- Staphylococcus metabolism MeSH
- Temperature MeSH
- Textiles MeSH
- Textile Industry MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
Current antibiotics and chemotherapeutics are becoming ineffective because pathogenic bacteria and tumor cells have developed multiple drug resistance. Therefore, it is necessary to find new substances that can be used in treatment, either alone or as sensitizing molecules in combination with existing drugs. Peptaibols are bioactive, membrane-active peptides of non-ribosomal origin, mainly produced by filamentous fungi such as Trichoderma spp. This study focused on producing peptaibol-rich extracts from Trichoderma atroviride O1, cultivated on malt extract agar (MA) under circadian and constant darkness conditions for 13 days. Peptaibol production was detected by MALDI-TOF mass spectrometry after six days of cultivation. The extracts demonstrated antibacterial activity against Staphylococcus aureus strains, particularly the methicillin-resistant variant, but not against the Gram-negative Pseudomonas aeruginosa. Quorum sensing interference revealed that a peptaibol-rich extract suppressed Vibrio campbellii BAA-1119's AI-2 signaling system to a degree comparable with gentamycin. Beyond antibacterial properties, the extracts exhibited notable antiproliferative activity against human ovarian cancer cells and their adriamycin-resistant subline in both 2D and 3D models. Specifically, MA-derived extracts reduced ovarian cancer cell viability by 70% at 50 μg/mL, especially under light/dark regime of cultivation. Compared to previously published results for PDA-based extracts, MA cultivation shifted the biological effects of peptaibol-containing extracts toward anticancer potential. These findings support the idea that modifying fungal cultivation parameters, the bioactivity of secondary metabolite mixtures can be tailored for specific therapeutic applications.
- MeSH
- Agar * chemistry MeSH
- Anti-Bacterial Agents * pharmacology metabolism MeSH
- Hypocreales MeSH
- Culture Media chemistry MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Cell Line, Tumor MeSH
- Peptaibols * pharmacology metabolism biosynthesis chemistry MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents * pharmacology metabolism MeSH
- Pseudomonas aeruginosa drug effects MeSH
- Staphylococcus aureus drug effects MeSH
- Trichoderma * metabolism growth & development chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Antibiotic resistance is one of the biggest threats to global health. Fungal endophytes are important sources of active natural products with antimicrobial potential. The purpose of this study was to characterize the endophytes coexisting with Helichrysum oocephalum, evaluate their antimicrobial activities, and annotate the endophytes metabolites. Six fungal species, including Fusarium avenaceum and Fusarium tricinctum, were identified. Endophytes were cultured, and their metabolites were extracted. The antimicrobial effects of the extracts were tested against Staphylococcus aureus, Bacillus cereus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. In addition, anti-biofilm effects of the extracts were examined against P. aeruginosa and S. epidermidis. The metabolites in the most active extract were annotated on the basis of the LC-ESI-QToF-MS/MS data. In anti-biofilm studies, F. avenaceum extract was effective in destroying and inhibiting the biofilm formation of S. epidermidis. LC-MS analysis showed that most of the identified compounds in the active extracts were enniatins (cyclic hexadepsipeptides). However, apicidin derivatives were also annotated. Our results revealed that these endophytes, especially Fusarium species, have antimicrobial activity against S. aureus, B. cereus, and C. albicans and anti-biofilm activity against S. epidermidis. According to the literature, the observed antimicrobial activity can be attributed to the enniatins. However, further phytochemical and pharmacological studies are necessary in this regard.
- MeSH
- Anti-Bacterial Agents * pharmacology isolation & purification chemistry MeSH
- Antifungal Agents * pharmacology isolation & purification chemistry MeSH
- Anti-Infective Agents * pharmacology isolation & purification chemistry MeSH
- Bacillus cereus drug effects MeSH
- Biofilms drug effects MeSH
- Candida albicans drug effects MeSH
- Endophytes * chemistry metabolism isolation & purification MeSH
- Escherichia coli drug effects MeSH
- Fusarium * chemistry metabolism MeSH
- Microbial Sensitivity Tests MeSH
- Pseudomonas aeruginosa drug effects MeSH
- Staphylococcus aureus drug effects MeSH
- Staphylococcus epidermidis drug effects MeSH
- Tandem Mass Spectrometry MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Antimicrobial lock therapy is recommended for preventing and treating catheter-related bloodstream infections, but different solutions have uncertain efficacy. METHODS: Two locks, 1.35% taurolidine and 4% ethylenediaminetetraacetic acid (EDTA), were tested on Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, multidrug-resistant P. aeruginosa, vancomycin-resistant Enterococcus faecium, Klebsiella oxytoca (carbapenemase producing), K. pneumoniae (extended-spectrum β-lactamase producing), Candida albicans, and Candida glabrata. Broviac catheter segments were incubated with these organisms and then exposed to various lock solutions. Colony-forming units (CFUs) were counted after 2, 4, and 24 h of incubation. RESULTS: Taurolidine showed a significant decrease in CFUs after 2 h in S. aureus, S. epidermidis, methicillin-resistant S. aureus, vancomycin-resistant E. faecium, P. aeruginosa (both sensitive and multidrug-resistant strains), K. oxytoca, C. albicans, and C. glabrata. After 4 h, significant reductions were noted in S. aureus, S. epidermidis, methicillin-resistant S. aureus, P. aeruginosa, multidrug-resistant P. aeruginosa, K. pneumoniae, K. oxytoca, and C. albicans. Taurolidine was also effective after 24 h, especially against methicillin-resistant S. aureus and multidrug-resistant P. aeruginosa. Four percent EDTA acid showed a significant reduction in CFUs after 2 h in S. aureus, vancomycin-resistant E. faecium, P. aeruginosa, K. oxytoca, C. albicans, and C. glabrata. After 4 h, reductions occurred in P. aeruginosa, multidrug-resistant P. aeruginosa, K. oxytoca, and C. albicans and after 24 h in methicillin-resistant S. aureus, P. aeruginosa, and K. oxytoca. CONCLUSION: Taurolidine is more effective than 4% EDTA acid in eradicating Gram-positive and Gram-negative microorganisms and fungi.
- MeSH
- Anti-Infective Agents * pharmacology MeSH
- Candida albicans drug effects MeSH
- Edetic Acid * pharmacology MeSH
- Catheter-Related Infections * prevention & control microbiology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Microbial Sensitivity Tests MeSH
- Colony Count, Microbial MeSH
- Pseudomonas aeruginosa drug effects MeSH
- Staphylococcus aureus drug effects MeSH
- Staphylococcus epidermidis drug effects MeSH
- Taurine * analogs & derivatives pharmacology MeSH
- Thiadiazines * pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
To trace evolution of Panton-Valentine leucocidin-positive clonal complex 398 methicillin-resistant Staphylococcus aureus (MRSA) in the Czech Republic, we tested 103 MRSA isolates from humans. Five (4.9%) were Panton-Valentine leucocidin-positive clonal complex 398, sequence types 1232 and 9181. Spread to the Czech Republic may result from travel to or from other countries.
- MeSH
- Bacterial Toxins * biosynthesis genetics MeSH
- History, 21st Century MeSH
- Adult MeSH
- Exotoxins * genetics biosynthesis MeSH
- Leukocidins * genetics MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * genetics isolation & purification MeSH
- Staphylococcal Infections * microbiology epidemiology MeSH
- Check Tag
- History, 21st Century MeSH
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Geographicals
- Czech Republic MeSH
Infections caused by antibiotic-drug-resistant microorganisms are a major global health concern, and they result in millions of deaths every year. Methicillin-resistant Staphylococcus aureus (MRSA) is one of such drug-resistant microbial strains, and new and effective antimicrobial agents are desperately needed to combat infections caused by MRSA. In the search for effective anti-MRSA agents, the leaves of Citrus grandis (Rutaceae), also known as C. maxima, were investigated. Implementing a bioassay-guided approach, sinensetin (2), which is a polymethoxyflavone, was isolated as a promising anti-MRSA compound, showing inhibitory activity against three (EMRSA-15, MRSA340802 and MRSA274819; MIC values 128-256 μg/mL) of five MRSA strains tested in the present study. Five other flavonoids 6,7,8,3',4'-pentamethoxyflavone (1), cirsilineol (3), nobiletin (4), 5-desmethylsinensetin (5) and hesperidin (6) were isolated from the dichloromethane extract of this plant. They displayed varied levels of antimicrobial activities against the tested microbial strains, Micrococcus luteus NCTC 7508, Escherichia coli NCTC 12241 and Pseudomonas aeruginosa NCTC 12903, and a fungal strain, Candida albicans ATCC 90028, but not against Staphylococcus aureus NCTC 12981. Sinensetin (2) also exhibited strong antimicrobial activity against the fungal strain C. albicans with an MIC value of 0.0625 mg/mL. The chemical structures of all isolated compounds were unequivocally elucidated by spectroscopic means (1D and 2D NMR and HR-ESIMS). The present study revealed sinensetin (2) as a potential structural template for generating structural analogues and developing anti-MRSA agents and provided scientific evidence supporting the traditional uses of C. grandis in the treatment of microbial infections.
- MeSH
- Anti-Bacterial Agents pharmacology isolation & purification chemistry MeSH
- Candida albicans drug effects MeSH
- Citrus * chemistry MeSH
- Flavonoids * pharmacology isolation & purification MeSH
- Phytochemicals pharmacology isolation & purification MeSH
- Plant Leaves * chemistry MeSH
- Methicillin-Resistant Staphylococcus aureus * drug effects MeSH
- Microbial Sensitivity Tests * MeSH
- Molecular Structure MeSH
- Plant Extracts pharmacology chemistry MeSH
- Publication type
- Journal Article MeSH
Medical students are exposed to the hospital environment and patients during their studies, increasing the risk of exposure to virulent and antibiotic-resistant isolates of Staphylococcus aureus. The aim of the study is to determine the prevalence of Staphylococcus aureus among medical students who have varying levels of exposure to the hospital environment to provide valuable insights into the risk of colonization and transmission. Nasal swabs and fingerprints were obtained and cultured on a selective medium for staphylococci. The obtained isolates were confirmed as methicillin-sensitive S. aureus (MSSA) or methicillin-resistant (MRSA) using PCR. Antibiotic resistance, the presence of virulence genes including enterotoxin encoding genes, and spa typing were performed. Among pre-clinical students, MSSA was detected on the nose in 45.2% and on the fingerprints in 10.6% of the participants. Among clinical students, MSSA was detected on the nose in 42.0% and on the fingerprints in 25.4%. Only one MRSA isolate was obtained. Genes seg and sei were the most frequently detected in both student groups, with their presence in over 40% of isolates among clinical students. The eta and etb genes were mainly detected from the nose in both student groups. In pre-clinical students, S. aureus carrying eta gene occurred in 6.4% and etb in 8.5%. In clinical students, the occurrence was 5.1% for eta and 8.5% for etb. The tst gene was identified only in the nose and fingerprints of the clinical student group. The most frequently observed resistance was to clindamycin and erythromycin. In total 58 different spa types were identified. High rates of asymptomatic MSSA carriage were observed in both groups of medical students. Detected MSSA strains showed a high degree of genetic variability, with a number of them carrying the virulence and antibiotic resistance genes. Although students do not exhibit increased risk to their patient's, increased hygiene is required in asymptomatic carriage personnel. The overall prevalence of MRSA was low, with a minimal risk of spread.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Adult MeSH
- Virulence Factors * genetics MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus genetics isolation & purification drug effects classification MeSH
- Microbial Sensitivity Tests MeSH
- Young Adult MeSH
- Carrier State * microbiology epidemiology MeSH
- Prevalence MeSH
- Staphylococcal Infections * microbiology epidemiology MeSH
- Staphylococcus aureus * genetics isolation & purification drug effects classification MeSH
- Students, Medical * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms. To reflect the wound environment, Tryptic soy broth, RPMI 1640 with and without glucose, and Lubbock medium were supplemented with different amounts of host effector molecules present in human plasma or sheep red blood cells. The study demonstrates that the Lubbock medium provided the most appropriate amount of nutrients regarding the biomass structure and the highest degree of tolerance to selected antimicrobials with the evident contribution of the biofilm matrix. Our results allow the rational employment of nutrition conditions within methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro for preclinical research. Additionally, one of the potential targets of a complex antibiofilm strategy, carbohydrates, was revealed since they are prevailing molecules in the matrices regardless of the cultivation media.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Biofilms * drug effects growth & development MeSH
- Candida albicans * drug effects physiology MeSH
- Culture Media * pharmacology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * drug effects physiology MeSH
- Microbial Sensitivity Tests MeSH
- Sheep MeSH
- Nutrients metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Public transport represents a potential site for the transmission of resistant pathogens due to the rapid movement of large numbers of people. This study aimed to investigate the bacterial contamination of frequently touched surfaces in the public transport system operating in the proximity of the biggest Czech hospital during the coronavirus pandemic despite extensive cleaning and disinfection efforts. In June and September 2020, samples from the metro trains, ground transport and stationary objects were collected, enriched and cultured. The antimicrobial susceptibility was tested by broth microdilution. Staphylococcus aureus isolates exhibiting inconclusive results of vancomycin susceptibility testing were retested by broth macrodilution and subjected to whole genome sequencing. All S. aureus isolates were tested for vancomycin heteroresistance (hVISA). A total of 513/542 (94.6 %) samples were culture-positive with higher frequency in September (p = 0.004). S. aureus was the most frequent opportunistic bacterial pathogen found (3.7 %, 20/542) followed by Enterobacterales spp. (1.8 %, 10/542). No methicillin-resistant S. aureus (MRSA), extended-spectrum beta-lactamase producers (ESBL) or carbapenemase-producing bacteria were detected. Resistance to clinically relevant drugs was rare except for resistance to ampicillin (67 %, 8/12), cefuroxime (42 %, 5/12) in Enterobacterales and chloramphenicol (90 %, 18/20), penicillin (45 %, 9/20), and erythromycin (20 %, 4/20) in S. aureus. One S. aureus isolate was shown to be resistant to vancomycin (8 mg/L) by forming large visible cell aggregates. Population analysis profile-area under the curve ratio (PAP-AUC) testing did not confirm the hVISA phenotype, but mutations in the hVISA phenotype-related gene vraR and other genes related to cell wall synthesis (fmtB) and intercellular adhesion (sasC) were found. Our study shows that in the COVID-19 pandemic, despite the intensive use of disinfectants, public transport was a source of opportunistic bacterial pathogens including S. aureus with unusual vancomycin resistance phenotype that could be easily missed by standard susceptibility testing.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- COVID-19 * MeSH
- Transportation MeSH
- Humans MeSH
- Microbial Sensitivity Tests * MeSH
- Pandemics MeSH
- Vancomycin Resistance MeSH
- SARS-CoV-2 * MeSH
- Staphylococcus aureus * drug effects genetics MeSH
- Vancomycin * pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH