-
Something wrong with this record ?
Human CtIP promotes DNA end resection
AA Sartori, C Lukas, J Coates, M Mistrik, S Fu, J Bartek, R Baer, J Lukas, SP Jackson
Language English Country England, Great Britain
NLK
Nature Journals Online
from 1997
Nature Journal Archive
from 1997
ProQuest Central
from 1990-01-04 to 1 year ago
Medline Complete (EBSCOhost)
from 1997-06-05 to 2015-11-26
Nursing & Allied Health Database (ProQuest)
from 1990-01-04 to 1 year ago
Health & Medicine (ProQuest)
from 1990-01-04 to 1 year ago
Psychology Database (ProQuest)
from 1990-01-04 to 1 year ago
Public Health Database (ProQuest)
from 1990-01-04 to 1 year ago
PubMed
17965729
Knihovny.cz E-resources
- MeSH
- Ataxia Telangiectasia Mutated Proteins MeSH
- DNA-Binding Proteins metabolism MeSH
- DNA * metabolism MeSH
- DNA Breaks, Double-Stranded drug effects MeSH
- Endonucleases MeSH
- G2 Phase MeSH
- Nuclear Proteins genetics metabolism deficiency MeSH
- DNA, Single-Stranded metabolism MeSH
- Conserved Sequence MeSH
- Humans MeSH
- Evolution, Molecular MeSH
- Cell Line, Tumor MeSH
- DNA Repair * drug effects MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- Cell Cycle Proteins metabolism MeSH
- Recombination, Genetic * drug effects MeSH
- S Phase MeSH
- Saccharomyces cerevisiae Proteins chemistry MeSH
- Carrier Proteins genetics metabolism MeSH
- Check Tag
- Humans MeSH
In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14076516
- 003
- CZ-PrNML
- 005
- 20141022135017.0
- 007
- ta
- 008
- 141022s2007 enk f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)17965729
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Sartori, A.A. $u The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
- 245 10
- $a Human CtIP promotes DNA end resection / $c AA Sartori, C Lukas, J Coates, M Mistrik, S Fu, J Bartek, R Baer, J Lukas, SP Jackson
- 520 9_
- $a In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.
- 536 __
- $c Grant Number: A5290 (United Kingdom Cancer Research UK)
- 590 __
- $a bohemika - dle Pubmed
- 650 02
- $a ATM protein $7 D064007
- 650 02
- $a transportní proteiny $x genetika $x metabolismus $7 D002352
- 650 02
- $a proteiny buněčného cyklu $x metabolismus $7 D018797
- 650 02
- $a nádorové buněčné linie $7 D045744
- 650 02
- $a konzervovaná sekvence $7 D017124
- 650 12
- $a DNA $x metabolismus $7 D004247
- 650 02
- $a dvouřetězcové zlomy DNA $x účinky léků $7 D053903
- 650 02
- $a oprava DNA $x účinky léků $7 D004260
- 650 12
- $a oprava DNA $7 D004260
- 650 02
- $a jednovláknová DNA $x metabolismus $7 D004277
- 650 02
- $a DNA vazebné proteiny $x metabolismus $7 D004268
- 650 02
- $a endonukleasy $7 D004720
- 650 02
- $a molekulární evoluce $7 D019143
- 650 02
- $a G2 fáze $7 D016195
- 650 02
- $a lidé $7 D006801
- 650 02
- $a jaderné proteiny $x genetika $x metabolismus $x nedostatek $7 D009687
- 650 02
- $a protein-serin-threoninkinasy $x metabolismus $7 D017346
- 650 02
- $a rekombinace genetická $x účinky léků $7 D011995
- 650 12
- $a rekombinace genetická $7 D011995
- 650 02
- $a S fáze $7 D016196
- 650 02
- $a Saccharomyces cerevisiae - proteiny $x chemie $7 D029701
- 700 1_
- $a Lukas, C.
- 700 1_
- $a Coates, J.
- 700 1_
- $a Mistrik, Martin
- 700 1_
- $a Fu, S.
- 700 1_
- $a Bártek, Jiří, $d 1953- $7 xx0046271
- 700 1_
- $a Baer, R.
- 700 1_
- $a Lukáš, Jiří $7 xx0094305
- 700 1_
- $a Jackson, S.P.
- 773 0_
- $t Nature $g Roč. 450, č. 7169 (2007), s. 509-514 $p Nature $x 0028-0836 $w MED00003455
- 773 0_
- $p Nature $g 450(7169):509-14, 2007 Nov 22
- 910 __
- $a ABA008 $y 4 $z 0
- 990 __
- $a 20141022111452 $b ABA008
- 991 __
- $a 20141022135020 $b ABA008
- 999 __
- $a ok $b bmc $g 1044588 $s 875458
- BAS __
- $a 3
- BMC __
- $a 2007 $b 450 $c 7169 $d 509-514 $x MED00003455 $i 0028-0836 $m Nature $n Nature
- LZP __
- $a NLK 2014-1/lp