• Something wrong with this record ?

Human CtIP promotes DNA end resection

AA Sartori, C Lukas, J Coates, M Mistrik, S Fu, J Bartek, R Baer, J Lukas, SP Jackson

. 2007 ; 450 (7169) : 509-514.

Language English Country England, Great Britain

E-resources Online Full text

NLK Nature Journals Online from 1997
Nature Journal Archive from 1997
ProQuest Central from 1990-01-04 to 1 year ago
Medline Complete (EBSCOhost) from 1997-06-05 to 2015-11-26
Nursing & Allied Health Database (ProQuest) from 1990-01-04 to 1 year ago
Health & Medicine (ProQuest) from 1990-01-04 to 1 year ago
Psychology Database (ProQuest) from 1990-01-04 to 1 year ago
Public Health Database (ProQuest) from 1990-01-04 to 1 year ago

In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.

000      
00000naa a2200000 a 4500
001      
bmc14076516
003      
CZ-PrNML
005      
20141022135017.0
007      
ta
008      
141022s2007 enk f 000 0|eng||
009      
AR
035    __
$a (PubMed)17965729
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Sartori, A.A. $u The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
245    10
$a Human CtIP promotes DNA end resection / $c AA Sartori, C Lukas, J Coates, M Mistrik, S Fu, J Bartek, R Baer, J Lukas, SP Jackson
520    9_
$a In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.
536    __
$c Grant Number: A5290 (United Kingdom Cancer Research UK)
590    __
$a bohemika - dle Pubmed
650    02
$a ATM protein $7 D064007
650    02
$a transportní proteiny $x genetika $x metabolismus $7 D002352
650    02
$a proteiny buněčného cyklu $x metabolismus $7 D018797
650    02
$a nádorové buněčné linie $7 D045744
650    02
$a konzervovaná sekvence $7 D017124
650    12
$a DNA $x metabolismus $7 D004247
650    02
$a dvouřetězcové zlomy DNA $x účinky léků $7 D053903
650    02
$a oprava DNA $x účinky léků $7 D004260
650    12
$a oprava DNA $7 D004260
650    02
$a jednovláknová DNA $x metabolismus $7 D004277
650    02
$a DNA vazebné proteiny $x metabolismus $7 D004268
650    02
$a endonukleasy $7 D004720
650    02
$a molekulární evoluce $7 D019143
650    02
$a G2 fáze $7 D016195
650    02
$a lidé $7 D006801
650    02
$a jaderné proteiny $x genetika $x metabolismus $x nedostatek $7 D009687
650    02
$a protein-serin-threoninkinasy $x metabolismus $7 D017346
650    02
$a rekombinace genetická $x účinky léků $7 D011995
650    12
$a rekombinace genetická $7 D011995
650    02
$a S fáze $7 D016196
650    02
$a Saccharomyces cerevisiae - proteiny $x chemie $7 D029701
700    1_
$a Lukas, C.
700    1_
$a Coates, J.
700    1_
$a Mistrik, Martin
700    1_
$a Fu, S.
700    1_
$a Bártek, Jiří, $d 1953- $7 xx0046271
700    1_
$a Baer, R.
700    1_
$a Lukáš, Jiří $7 xx0094305
700    1_
$a Jackson, S.P.
773    0_
$t Nature $g Roč. 450, č. 7169 (2007), s. 509-514 $p Nature $x 0028-0836 $w MED00003455
773    0_
$p Nature $g 450(7169):509-14, 2007 Nov 22
910    __
$a ABA008 $y 4 $z 0
990    __
$a 20141022111452 $b ABA008
991    __
$a 20141022135020 $b ABA008
999    __
$a ok $b bmc $g 1044588 $s 875458
BAS    __
$a 3
BMC    __
$a 2007 $b 450 $c 7169 $d 509-514 $x MED00003455 $i 0028-0836 $m Nature $n Nature
LZP    __
$a NLK 2014-1/lp

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...