• Something wrong with this record ?

Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning

K. Jackowski, B. Krawczyk, M. Woźniak,

. 2014 ; 24 (3) : 1430007.

Language English Country Singapore

Document type Journal Article, Research Support, Non-U.S. Gov't

Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues and propose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide range of computer experiments that show that AdaSS+ can outperform the original method and several reference classifiers.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15008293
003      
CZ-PrNML
005      
20150325112501.0
007      
ta
008      
150306s2014 si f 000 0|eng||
009      
AR
024    7_
$a 10.1142/S0129065714300071 $2 doi
035    __
$a (PubMed)24552506
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a si
100    1_
$a Jackowski, Konrad $u IT4Innovations, VŠB-Technical University of Ostrava, Czech Republic , Department of Systems and Computer Networks, Wrocław University of Technology, Wrocław, Wyb. Wyspianskiego 27, Poland.
245    10
$a Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning / $c K. Jackowski, B. Krawczyk, M. Woźniak,
520    9_
$a Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues and propose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide range of computer experiments that show that AdaSS+ can outperform the original method and several reference classifiers.
650    _2
$a algoritmy $7 D000465
650    12
$a umělá inteligence $7 D001185
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    12
$a teoretické modely $7 D008962
650    12
$a rozpoznávání automatizované $7 D010363
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Krawczyk, Bartosz
700    1_
$a Woźniak, Michał
773    0_
$w MED00002342 $t International journal of neural systems $x 0129-0657 $g Roč. 24, č. 3 (2014), s. 1430007
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24552506 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150306 $b ABA008
991    __
$a 20150325112750 $b ABA008
999    __
$a ok $b bmc $g 1065566 $s 891093
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 24 $c 3 $d 1430007 $i 0129-0657 $m International journal of neural systems $n Int J Neural Syst $x MED00002342
LZP    __
$a Pubmed-20150306

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...