Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A new feature extraction framework based on wavelets for breast cancer diagnosis

S. Ergin, O. Kilinc,

. 2014 ; 51 (-) : 171-82.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc15014202

This paper investigates a pattern recognition framework in order to determine and classify breast cancer cases. Initially, a two-class separation study classifying normal and abnormal (cancerous) breast tissues is achieved. The Histogram of Oriented Gradients (HOG), Dense Scale Invariant Feature Transform (DSIFT), and Local Configuration Pattern (LCP) methods are used to extract the rotation- and scale-invariant features for all tissue patches. A classification is made utilizing Support Vector Machine (SVM), k-Nearest Neighborhood (k-NN), Decision Tree, and Fisher Linear Discriminant Analysis (FLDA) via 10-fold cross validation. Then, a three-class study (normal, benign, and malignant cancerous cases) is carried out using similar procedures in a two-class case; however, the attained classification accuracies are not sufficiently satisfied. Therefore, a new feature extraction framework is proposed. The feature vectors are again extracted with this new framework, and more satisfactory results are obtained. Our new framework achieved a remarkable increase in recognition performance for the three-class study.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15014202
003      
CZ-PrNML
005      
20150424112455.0
007      
ta
008      
150420s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2014.05.008 $2 doi
035    __
$a (PubMed)24951852
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Ergin, Semih $u Eskisehir Osmangazi University, Department of Electrical and Electronics Engineering, Meselik Campus, 26480 Eskisehir, Turkey. Electronic address: sergin@ogu.edu.tr.
245    12
$a A new feature extraction framework based on wavelets for breast cancer diagnosis / $c S. Ergin, O. Kilinc,
520    9_
$a This paper investigates a pattern recognition framework in order to determine and classify breast cancer cases. Initially, a two-class separation study classifying normal and abnormal (cancerous) breast tissues is achieved. The Histogram of Oriented Gradients (HOG), Dense Scale Invariant Feature Transform (DSIFT), and Local Configuration Pattern (LCP) methods are used to extract the rotation- and scale-invariant features for all tissue patches. A classification is made utilizing Support Vector Machine (SVM), k-Nearest Neighborhood (k-NN), Decision Tree, and Fisher Linear Discriminant Analysis (FLDA) via 10-fold cross validation. Then, a three-class study (normal, benign, and malignant cancerous cases) is carried out using similar procedures in a two-class case; however, the attained classification accuracies are not sufficiently satisfied. Therefore, a new feature extraction framework is proposed. The feature vectors are again extracted with this new framework, and more satisfactory results are obtained. Our new framework achieved a remarkable increase in recognition performance for the three-class study.
650    _2
$a nádory prsu $x radiografie $7 D001943
650    _2
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a mamografie $x metody $7 D008327
650    12
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kilinc, Onur $u University of Pardubice, Department of Transport Engineering, Koleje Pavilion B, 53009 Pardubice, Czech Republic.
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 51, č. - (2014), s. 171-82
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24951852 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150420 $b ABA008
991    __
$a 20150424112756 $b ABA008
999    __
$a ok $b bmc $g 1071783 $s 897080
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 51 $c - $d 171-82 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20150420

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...