-
Je něco špatně v tomto záznamu ?
A new feature extraction framework based on wavelets for breast cancer diagnosis
S. Ergin, O. Kilinc,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 2003-01-01 do 2023-12-31
Medline Complete (EBSCOhost)
od 2012-09-01 do 2015-07-31
Nursing & Allied Health Database (ProQuest)
od 2003-01-01 do 2023-12-31
Health & Medicine (ProQuest)
od 2003-01-01 do 2023-12-31
- MeSH
- diagnóza počítačová metody MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- mamografie metody MeSH
- nádory prsu radiografie MeSH
- support vector machine * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper investigates a pattern recognition framework in order to determine and classify breast cancer cases. Initially, a two-class separation study classifying normal and abnormal (cancerous) breast tissues is achieved. The Histogram of Oriented Gradients (HOG), Dense Scale Invariant Feature Transform (DSIFT), and Local Configuration Pattern (LCP) methods are used to extract the rotation- and scale-invariant features for all tissue patches. A classification is made utilizing Support Vector Machine (SVM), k-Nearest Neighborhood (k-NN), Decision Tree, and Fisher Linear Discriminant Analysis (FLDA) via 10-fold cross validation. Then, a three-class study (normal, benign, and malignant cancerous cases) is carried out using similar procedures in a two-class case; however, the attained classification accuracies are not sufficiently satisfied. Therefore, a new feature extraction framework is proposed. The feature vectors are again extracted with this new framework, and more satisfactory results are obtained. Our new framework achieved a remarkable increase in recognition performance for the three-class study.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15014202
- 003
- CZ-PrNML
- 005
- 20150424112455.0
- 007
- ta
- 008
- 150420s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compbiomed.2014.05.008 $2 doi
- 035 __
- $a (PubMed)24951852
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Ergin, Semih $u Eskisehir Osmangazi University, Department of Electrical and Electronics Engineering, Meselik Campus, 26480 Eskisehir, Turkey. Electronic address: sergin@ogu.edu.tr.
- 245 12
- $a A new feature extraction framework based on wavelets for breast cancer diagnosis / $c S. Ergin, O. Kilinc,
- 520 9_
- $a This paper investigates a pattern recognition framework in order to determine and classify breast cancer cases. Initially, a two-class separation study classifying normal and abnormal (cancerous) breast tissues is achieved. The Histogram of Oriented Gradients (HOG), Dense Scale Invariant Feature Transform (DSIFT), and Local Configuration Pattern (LCP) methods are used to extract the rotation- and scale-invariant features for all tissue patches. A classification is made utilizing Support Vector Machine (SVM), k-Nearest Neighborhood (k-NN), Decision Tree, and Fisher Linear Discriminant Analysis (FLDA) via 10-fold cross validation. Then, a three-class study (normal, benign, and malignant cancerous cases) is carried out using similar procedures in a two-class case; however, the attained classification accuracies are not sufficiently satisfied. Therefore, a new feature extraction framework is proposed. The feature vectors are again extracted with this new framework, and more satisfactory results are obtained. Our new framework achieved a remarkable increase in recognition performance for the three-class study.
- 650 _2
- $a nádory prsu $x radiografie $7 D001943
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a mamografie $x metody $7 D008327
- 650 12
- $a support vector machine $7 D060388
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kilinc, Onur $u University of Pardubice, Department of Transport Engineering, Koleje Pavilion B, 53009 Pardubice, Czech Republic.
- 773 0_
- $w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 51, č. - (2014), s. 171-82
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24951852 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150420 $b ABA008
- 991 __
- $a 20150424112756 $b ABA008
- 999 __
- $a ok $b bmc $g 1071783 $s 897080
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 51 $c - $d 171-82 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
- LZP __
- $a Pubmed-20150420