Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Robustness analysis of stochastic biochemical systems

M. Ceska, D. Safránek, S. Dražan, L. Brim,

. 2014 ; 9 (4) : e94553.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15014371
003      
CZ-PrNML
005      
20150421092149.0
007      
ta
008      
150420s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0094553 $2 doi
035    __
$a (PubMed)24751941
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Ceska, Milan $u Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Brno, Czech Republic.
245    10
$a Robustness analysis of stochastic biochemical systems / $c M. Ceska, D. Safránek, S. Dražan, L. Brim,
520    9_
$a We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.
650    _2
$a zvířata $7 D000818
650    _2
$a buněčný cyklus $x genetika $7 D002453
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a lidé $7 D006801
650    _2
$a savci $7 D008322
650    _2
$a biologické modely $7 D008954
650    _2
$a signální transdukce $7 D015398
650    _2
$a stochastické procesy $7 D013269
650    12
$a systémová biologie $7 D049490
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Safránek, David $u Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Brno, Czech Republic.
700    1_
$a Dražan, Sven $u Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Brno, Czech Republic.
700    1_
$a Brim, Luboš $u Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Brno, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 9, č. 4 (2014), s. e94553
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24751941 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150420 $b ABA008
991    __
$a 20150421092447 $b ABA008
999    __
$a ok $b bmc $g 1071952 $s 897249
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 9 $c 4 $d e94553 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20150420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...