-
Je něco špatně v tomto záznamu ?
A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter
O. Kinclova-Zimmermannova, P. Falson, D. Cmunt, H. Sychrova,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bodová mutace MeSH
- draslík metabolismus MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- kationty metabolismus MeSH
- konformace proteinů MeSH
- lithium metabolismus MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- Na(+)-H(+) antiport chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sodík metabolismus MeSH
- substrátová specifita MeSH
- Zygosaccharomyces chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Na(+)/H(+) antiporters may recognize all alkali-metal cations as substrates but may transport them selectively. Plasma-membrane Zygosaccharomyces rouxii Sod2-22 antiporter exports Na(+) and Li(+), but not K(+). The molecular basis of this selectivity is unknown. We combined protein structure modeling, site-directed mutagenesis, phenotype analysis and cation efflux measurements to localize and characterize the cation selectivity region. A three-dimensional model of the ZrSod2-22 transmembrane domain was generated based on the X-ray structure of the Escherichia coli NhaA antiporter and primary sequence alignments with homologous yeast antiporters. The model suggested a close proximity of Thr141, Ala179 and Val375 from transmembrane segments 4, 5 and 11, respectively, forming a hydrophobic hole in the putative cation pathway's core. A series of mutagenesis experiments verified the model and showed that structural modifications of the hole resulted in altered cation selectivity and transport activity. The triple ZrSod2-22 mutant T141S-A179T-V375I gained K(+) transport capacity. The point mutation A179T restricted the antiporter substrate specificity to Li(+) and reduced its transport activity, while serine at this position preserved the native cation selectivity. The negative effect of the A179T mutation can be eliminated by introducing a second mutation, T141S or T141A, in the preceding transmembrane domain. Our experimental results confirm that the three residues found through modeling play a central role in the determination of cation selectivity and transport activity in Z. rouxii Na(+)/H(+) antiporter and that the cation selectivity can be modulated by repositioning a single local methyl group.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15022812
- 003
- CZ-PrNML
- 005
- 20150729111840.0
- 007
- ta
- 008
- 150709s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jmb.2015.02.012 $2 doi
- 035 __
- $a (PubMed)25701798
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kinclova-Zimmermannova, Olga $u Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, Prague 4, Czech Republic 142 20. Electronic address: olga.zimmermannova@fgu.cas.cz.
- 245 12
- $a A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter / $c O. Kinclova-Zimmermannova, P. Falson, D. Cmunt, H. Sychrova,
- 520 9_
- $a Na(+)/H(+) antiporters may recognize all alkali-metal cations as substrates but may transport them selectively. Plasma-membrane Zygosaccharomyces rouxii Sod2-22 antiporter exports Na(+) and Li(+), but not K(+). The molecular basis of this selectivity is unknown. We combined protein structure modeling, site-directed mutagenesis, phenotype analysis and cation efflux measurements to localize and characterize the cation selectivity region. A three-dimensional model of the ZrSod2-22 transmembrane domain was generated based on the X-ray structure of the Escherichia coli NhaA antiporter and primary sequence alignments with homologous yeast antiporters. The model suggested a close proximity of Thr141, Ala179 and Val375 from transmembrane segments 4, 5 and 11, respectively, forming a hydrophobic hole in the putative cation pathway's core. A series of mutagenesis experiments verified the model and showed that structural modifications of the hole resulted in altered cation selectivity and transport activity. The triple ZrSod2-22 mutant T141S-A179T-V375I gained K(+) transport capacity. The point mutation A179T restricted the antiporter substrate specificity to Li(+) and reduced its transport activity, while serine at this position preserved the native cation selectivity. The negative effect of the A179T mutation can be eliminated by introducing a second mutation, T141S or T141A, in the preceding transmembrane domain. Our experimental results confirm that the three residues found through modeling play a central role in the determination of cation selectivity and transport activity in Z. rouxii Na(+)/H(+) antiporter and that the cation selectivity can be modulated by repositioning a single local methyl group.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a kationty $x metabolismus $7 D002412
- 650 _2
- $a fungální proteiny $x chemie $x genetika $x metabolismus $7 D005656
- 650 _2
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 _2
- $a lithium $x metabolismus $7 D008094
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a bodová mutace $7 D017354
- 650 _2
- $a draslík $x metabolismus $7 D011188
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a sodík $x metabolismus $7 D012964
- 650 _2
- $a Na(+)-H(+) antiport $x chemie $x genetika $x metabolismus $7 D017923
- 650 _2
- $a substrátová specifita $7 D013379
- 650 _2
- $a Zygosaccharomyces $x chemie $x genetika $x metabolismus $7 D020068
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Falson, Pierre $u Drug Resistance Mechanism and Modulation Group, Molecular and Structural Basis of Infectious Systems, National Centre for Scientific Research and Lyon I University Laboratory No. 5086, Institute of Biology and Chemistry of Proteins, Lyon 69 367, France. Electronic address: pierre.falson@ibcp.fr.
- 700 1_
- $a Cmunt, Denis $u Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, Prague 4, Czech Republic 142 20. Electronic address: denis.cmunt@fgu.cas.cz.
- 700 1_
- $a Sychrova, Hana $u Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, Prague 4, Czech Republic 142 20. Electronic address: hana.sychrova@fgu.cas.cz.
- 773 0_
- $w MED00002808 $t Journal of molecular biology $x 1089-8638 $g Roč. 427, č. 8 (2015), s. 1681-94
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25701798 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150729111927 $b ABA008
- 999 __
- $a ok $b bmc $g 1083151 $s 905805
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 427 $c 8 $d 1681-94 $i 1089-8638 $m Journal of Molecular Biology $n J Mol Biol $x MED00002808
- LZP __
- $a Pubmed-20150709