-
Je něco špatně v tomto záznamu ?
Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae)
E. Dobešová, H. Malinská, R. Matyášek, AR. Leitch, DE. Soltis, PS. Soltis, A. Kovařík,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Free Medical Journals
od 2011
PubMed Central
od 2011 do Před 1 rokem
Europe PubMed Central
od 2011 do Před 1 rokem
ProQuest Central
od 2000-01-01 do Před 1 rokem
Open Access Digital Library
od 1947-01-01
Medline Complete (EBSCOhost)
od 1996-01-01 do 2015-12-31
Health & Medicine (ProQuest)
od 2000-01-01 do Před 1 rokem
Public Health Database (ProQuest)
od 2000-01-01 do Před 1 rokem
PubMed
25537492
DOI
10.1038/hdy.2014.111
Knihovny.cz E-zdroje
- MeSH
- genová dávka * MeSH
- geny rRNA * MeSH
- metylace DNA MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- organizátor jadérka MeSH
- polyploidie MeSH
- promotorové oblasti (genetika) MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální 5.8S genetika MeSH
- RNA ribozomální genetika MeSH
- rostlinné geny * MeSH
- sekvenční analýza DNA MeSH
- sekvenční delece MeSH
- Tragopogon genetika MeSH
- umlčování genů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
To study the relationship between uniparental rDNA (encoding 18S, 5.8S and 26S ribosomal RNA) silencing (nucleolar dominance) and rRNA gene dosage, we studied a recently emerged (within the last 80 years) allotetraploid Tragopogon mirus (2n=24), formed from the diploid progenitors T. dubius (2n=12, D-genome donor) and T. porrifolius (2n=12, P-genome donor). Here, we used molecular, cytogenetic and genomic approaches to analyse rRNA gene activity in two sibling T. mirus plants (33A and 33B) with widely different rRNA gene dosages. Plant 33B had ~400 rRNA genes at the D-genome locus, which is typical for T. mirus, accounting for ~25% of total rDNA. We observed characteristic expression dominance of T. dubius-origin genes in all organs. Its sister plant 33A harboured a homozygous macrodeletion that reduced the number of T. dubius-origin genes to about 70 copies (~4% of total rDNA). It showed biparental rDNA expression in root, flower and callus, but not in leaf where D-genome rDNA dominance was maintained. There was upregulation of minor rDNA variants in some tissues. The RNA polymerase I promoters of reactivated T. porrifolius-origin rRNA genes showed reduced DNA methylation, mainly at symmetrical CG and CHG nucleotide motifs. We hypothesise that active, decondensed rDNA units are most likely to be deleted via recombination. The silenced homeologs could be used as a 'first reserve' to ameliorate mutational damage and contribute to evolutionary success of polyploids. Deletion and reactivation cycles may lead to bidirectional homogenisation of rRNA arrays in the long term.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15022893
- 003
- CZ-PrNML
- 005
- 20150729123056.0
- 007
- ta
- 008
- 150709s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/hdy.2014.111 $2 doi
- 035 __
- $a (PubMed)25537492
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Dobešová, E $u Laboratory of Molecular Epigenetics, Academy of Sciences of the Czech Republic, v.v.i, Institute of Biophysics, Brno, Czech Republic.
- 245 10
- $a Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae) / $c E. Dobešová, H. Malinská, R. Matyášek, AR. Leitch, DE. Soltis, PS. Soltis, A. Kovařík,
- 520 9_
- $a To study the relationship between uniparental rDNA (encoding 18S, 5.8S and 26S ribosomal RNA) silencing (nucleolar dominance) and rRNA gene dosage, we studied a recently emerged (within the last 80 years) allotetraploid Tragopogon mirus (2n=24), formed from the diploid progenitors T. dubius (2n=12, D-genome donor) and T. porrifolius (2n=12, P-genome donor). Here, we used molecular, cytogenetic and genomic approaches to analyse rRNA gene activity in two sibling T. mirus plants (33A and 33B) with widely different rRNA gene dosages. Plant 33B had ~400 rRNA genes at the D-genome locus, which is typical for T. mirus, accounting for ~25% of total rDNA. We observed characteristic expression dominance of T. dubius-origin genes in all organs. Its sister plant 33A harboured a homozygous macrodeletion that reduced the number of T. dubius-origin genes to about 70 copies (~4% of total rDNA). It showed biparental rDNA expression in root, flower and callus, but not in leaf where D-genome rDNA dominance was maintained. There was upregulation of minor rDNA variants in some tissues. The RNA polymerase I promoters of reactivated T. porrifolius-origin rRNA genes showed reduced DNA methylation, mainly at symmetrical CG and CHG nucleotide motifs. We hypothesise that active, decondensed rDNA units are most likely to be deleted via recombination. The silenced homeologs could be used as a 'first reserve' to ameliorate mutational damage and contribute to evolutionary success of polyploids. Deletion and reactivation cycles may lead to bidirectional homogenisation of rRNA arrays in the long term.
- 650 _2
- $a metylace DNA $7 D019175
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 12
- $a genová dávka $7 D018628
- 650 12
- $a umlčování genů $7 D020868
- 650 12
- $a rostlinné geny $7 D017343
- 650 12
- $a geny rRNA $7 D020459
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a organizátor jadérka $7 D009697
- 650 _2
- $a polyploidie $7 D011123
- 650 _2
- $a promotorové oblasti (genetika) $7 D011401
- 650 _2
- $a RNA ribozomální $x genetika $7 D012335
- 650 _2
- $a RNA ribozomální 18S $x genetika $7 D012337
- 650 _2
- $a RNA ribozomální 5.8S $x genetika $7 D012340
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a sekvenční delece $7 D017384
- 650 _2
- $a Tragopogon $x genetika $7 D031188
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Malinská, H $u Laboratory of Molecular Epigenetics, Academy of Sciences of the Czech Republic, v.v.i, Institute of Biophysics, Brno, Czech Republic.
- 700 1_
- $a Matyášek, R $u Laboratory of Molecular Epigenetics, Academy of Sciences of the Czech Republic, v.v.i, Institute of Biophysics, Brno, Czech Republic.
- 700 1_
- $a Leitch, A R $u School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- 700 1_
- $a Soltis, D E $u Laboratory of Molecular Systematics & Evolutionary Genetics, Department of Biology, University of Florida, Gainesville, FL, USA.
- 700 1_
- $a Soltis, P S $u Laboratory of Molecular Systematics & Evolutionary Genetics, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- 700 1_
- $a Kovařík, A $u Laboratory of Molecular Epigenetics, Academy of Sciences of the Czech Republic, v.v.i, Institute of Biophysics, Brno, Czech Republic.
- 773 0_
- $w MED00002030 $t Heredity $x 1365-2540 $g Roč. 114, č. 3 (2015), s. 356-65
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25537492 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150729123142 $b ABA008
- 999 __
- $a ok $b bmc $g 1083232 $s 905886
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 114 $c 3 $d 356-65 $i 1365-2540 $m Heredity $n Heredity $x MED00002030
- LZP __
- $a Pubmed-20150709