-
Je něco špatně v tomto záznamu ?
Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa
ME. Anyan, A. Amiri, CW. Harvey, G. Tierra, N. Morales-Soto, CM. Driscoll, MS. Alber, JD. Shrout,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
NLK
Free Medical Journals
od 1915 do Před 6 měsíci
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-15
Open Access Digital Library
od 1915-01-01
PubMed
25468980
DOI
10.1073/pnas.1414661111
Knihovny.cz E-zdroje
- MeSH
- bakteriální adheze fyziologie MeSH
- bakteriální fimbrie metabolismus MeSH
- biofilmy růst a vývoj MeSH
- biologické modely * MeSH
- flagella fyziologie MeSH
- konfokální mikroskopie MeSH
- luminescentní proteiny MeSH
- mikrobiální interakce fyziologie MeSH
- počítačová simulace MeSH
- pohyb fyziologie MeSH
- Pseudomonas aeruginosa metabolismus fyziologie MeSH
- výpočetní biologie metody MeSH
- zelené fluorescenční proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.
Applied and Computational Mathematics and Statistics and
Departments of Civil and Environmental Engineering and Earth Sciences
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15022912
- 003
- CZ-PrNML
- 005
- 20150727122422.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1414661111 $2 doi
- 035 __
- $a (PubMed)25468980
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Anyan, Morgen E $u Departments of Civil and Environmental Engineering and Earth Sciences. $7 gn_A_00007635
- 245 10
- $a Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa / $c ME. Anyan, A. Amiri, CW. Harvey, G. Tierra, N. Morales-Soto, CM. Driscoll, MS. Alber, JD. Shrout,
- 520 9_
- $a Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.
- 650 _2
- $a bakteriální adheze $x fyziologie $7 D001422
- 650 _2
- $a biofilmy $x růst a vývoj $7 D018441
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a bakteriální fimbrie $x metabolismus $7 D010861
- 650 _2
- $a flagella $x fyziologie $7 D005407
- 650 _2
- $a zelené fluorescenční proteiny $7 D049452
- 650 _2
- $a luminescentní proteiny $7 D008164
- 650 _2
- $a mikrobiální interakce $x fyziologie $7 D056265
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a pohyb $x fyziologie $7 D009068
- 650 _2
- $a Pseudomonas aeruginosa $x metabolismus $x fyziologie $7 D011550
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Amiri, Aboutaleb $u Physics. $7 gn_A_00005625
- 700 1_
- $a Harvey, Cameron W $u Applied and Computational Mathematics and Statistics, and.
- 700 1_
- $a Tierra, Giordano $u Applied and Computational Mathematics and Statistics, and Mathematical Institute, Charles University, 18675 Prague, Czech Republic; and.
- 700 1_
- $a Morales-Soto, Nydia $u Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556;
- 700 1_
- $a Driscoll, Callan M $u Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556;
- 700 1_
- $a Alber, Mark S $u Physics, Applied and Computational Mathematics and Statistics, and Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 Joshua.Shrout@nd.edu malber@nd.edu. $7 gn_A_00003400
- 700 1_
- $a Shrout, Joshua D $u Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; Biological Sciences, and Joshua.Shrout@nd.edu malber@nd.edu.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 111, č. 50 (2014), s. 18013-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25468980 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150727122506 $b ABA008
- 999 __
- $a ok $b bmc $g 1083251 $s 905905
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 111 $c 50 $d 18013-8 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20150709