Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa

ME. Anyan, A. Amiri, CW. Harvey, G. Tierra, N. Morales-Soto, CM. Driscoll, MS. Alber, JD. Shrout,

. 2014 ; 111 (50) : 18013-8.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15022912
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-15
Open Access Digital Library od 1915-01-01

Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15022912
003      
CZ-PrNML
005      
20150727122422.0
007      
ta
008      
150709s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1414661111 $2 doi
035    __
$a (PubMed)25468980
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Anyan, Morgen E $u Departments of Civil and Environmental Engineering and Earth Sciences. $7 gn_A_00007635
245    10
$a Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa / $c ME. Anyan, A. Amiri, CW. Harvey, G. Tierra, N. Morales-Soto, CM. Driscoll, MS. Alber, JD. Shrout,
520    9_
$a Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.
650    _2
$a bakteriální adheze $x fyziologie $7 D001422
650    _2
$a biofilmy $x růst a vývoj $7 D018441
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a počítačová simulace $7 D003198
650    _2
$a bakteriální fimbrie $x metabolismus $7 D010861
650    _2
$a flagella $x fyziologie $7 D005407
650    _2
$a zelené fluorescenční proteiny $7 D049452
650    _2
$a luminescentní proteiny $7 D008164
650    _2
$a mikrobiální interakce $x fyziologie $7 D056265
650    _2
$a konfokální mikroskopie $7 D018613
650    12
$a biologické modely $7 D008954
650    _2
$a pohyb $x fyziologie $7 D009068
650    _2
$a Pseudomonas aeruginosa $x metabolismus $x fyziologie $7 D011550
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Amiri, Aboutaleb $u Physics. $7 gn_A_00005625
700    1_
$a Harvey, Cameron W $u Applied and Computational Mathematics and Statistics, and.
700    1_
$a Tierra, Giordano $u Applied and Computational Mathematics and Statistics, and Mathematical Institute, Charles University, 18675 Prague, Czech Republic; and.
700    1_
$a Morales-Soto, Nydia $u Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556;
700    1_
$a Driscoll, Callan M $u Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556;
700    1_
$a Alber, Mark S $u Physics, Applied and Computational Mathematics and Statistics, and Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 Joshua.Shrout@nd.edu malber@nd.edu. $7 gn_A_00003400
700    1_
$a Shrout, Joshua D $u Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; Biological Sciences, and Joshua.Shrout@nd.edu malber@nd.edu.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 111, č. 50 (2014), s. 18013-8
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25468980 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150727122506 $b ABA008
999    __
$a ok $b bmc $g 1083251 $s 905905
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 111 $c 50 $d 18013-8 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...