• Je něco špatně v tomto záznamu ?

Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI

EJ. Yoon, S. Goussard, M. Touchon, L. Krizova, G. Cerqueira, C. Murphy, T. Lambert, C. Grillot-Courvalin, A. Nemec, P. Courvalin,

. 2014 ; 5 (5) : e01972-14.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15022953

The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a -35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. Importance: We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before disseminating to phylogenetically distant genera pathogenic for humans. Using a combination of whole-genome sequencing of a collection of Acinetobacter spp. covering the breadth of the known taxonomic diversity of the genus, gene cloning, detailed promoter analysis, study of heterologous gene expression, and comparative analysis of the phylogenetic trees of aphA6 and of the bacterial hosts, we found that aphA6 originated in Acinetobacter guillouiae, an amikacin-susceptible environmental species. The gene conferred, upon mobilization, high-level resistance to the new hosts. This work stresses that nonpathogenic bacteria can act as reservoirs of resistance determinants, and it provides an example of the use of a genomic library to study the origin and dissemination of an antibiotic resistance gene to human pathogens.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15022953
003      
CZ-PrNML
005      
20160309110339.0
007      
ta
008      
150709s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1128/mBio.01972-14 $2 doi
035    __
$a (PubMed)25336457
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Yoon, Eun-Jeong $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France.
245    10
$a Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI / $c EJ. Yoon, S. Goussard, M. Touchon, L. Krizova, G. Cerqueira, C. Murphy, T. Lambert, C. Grillot-Courvalin, A. Nemec, P. Courvalin,
520    9_
$a The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a -35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. Importance: We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before disseminating to phylogenetically distant genera pathogenic for humans. Using a combination of whole-genome sequencing of a collection of Acinetobacter spp. covering the breadth of the known taxonomic diversity of the genus, gene cloning, detailed promoter analysis, study of heterologous gene expression, and comparative analysis of the phylogenetic trees of aphA6 and of the bacterial hosts, we found that aphA6 originated in Acinetobacter guillouiae, an amikacin-susceptible environmental species. The gene conferred, upon mobilization, high-level resistance to the new hosts. This work stresses that nonpathogenic bacteria can act as reservoirs of resistance determinants, and it provides an example of the use of a genomic library to study the origin and dissemination of an antibiotic resistance gene to human pathogens.
650    _2
$a Acinetobacter $x účinky léků $x enzymologie $x genetika $x izolace a purifikace $7 D000150
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a aminoglykosidy $x farmakologie $7 D000617
650    _2
$a antibakteriální látky $x farmakologie $7 D000900
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a shluková analýza $7 D016000
650    _2
$a konjugace genetická $7 D003227
650    _2
$a bakteriální léková rezistence $7 D024881
650    _2
$a mikrobiologie životního prostředí $7 D004783
650    _2
$a Escherichia coli $x enzymologie $x genetika $7 D004926
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a přenos genů horizontální $7 D022761
650    _2
$a rozptýlené repetitivní sekvence $7 D020071
650    _2
$a kanamycinkinasa $x genetika $7 D019868
650    _2
$a mikrobiální testy citlivosti $7 D008826
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a fylogeneze $7 D010802
650    _2
$a promotorové oblasti (genetika) $7 D011401
650    _2
$a sekvenční homologie $7 D017385
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Goussard, Sylvie $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France.
700    1_
$a Touchon, Marie
700    1_
$a Krizova, Lenka $u Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic.
700    1_
$a Cerqueira, Gustavo $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
700    1_
$a Murphy, Cheryl $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
700    1_
$a Lambert, Thierry $u EA4043, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France.
700    1_
$a Grillot-Courvalin, Catherine $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France.
700    1_
$a Nemec, Alexandr $u Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic.
700    1_
$a Courvalin, Patrice $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France patrice.courvalin@pasteur.fr.
773    0_
$w MED00188129 $t mBio $x 2150-7511 $g Roč. 5, č. 5 (2014), s. e01972-14
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25336457 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20160309110354 $b ABA008
999    __
$a ok $b bmc $g 1083292 $s 905946
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 5 $c 5 $d e01972-14 $i 2150-7511 $m mBio $n MBio $x MED00188129
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...