-
Je něco špatně v tomto záznamu ?
Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI
EJ. Yoon, S. Goussard, M. Touchon, L. Krizova, G. Cerqueira, C. Murphy, T. Lambert, C. Grillot-Courvalin, A. Nemec, P. Courvalin,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2010
Free Medical Journals
od 2010
Freely Accessible Science Journals
od 2010
PubMed Central
od 2010
Europe PubMed Central
od 2010
Open Access Digital Library
od 2010-01-01
Open Access Digital Library
od 2010-01-01
PubMed
25336457
DOI
10.1128/mbio.01972-14
Knihovny.cz E-zdroje
- MeSH
- Acinetobacter účinky léků enzymologie genetika izolace a purifikace MeSH
- aminoglykosidy farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence MeSH
- Escherichia coli enzymologie genetika MeSH
- fylogeneze MeSH
- kanamycinkinasa genetika MeSH
- konjugace genetická MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiologie životního prostředí MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- přenos genů horizontální MeSH
- promotorové oblasti (genetika) MeSH
- rozptýlené repetitivní sekvence MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a -35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. Importance: We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before disseminating to phylogenetically distant genera pathogenic for humans. Using a combination of whole-genome sequencing of a collection of Acinetobacter spp. covering the breadth of the known taxonomic diversity of the genus, gene cloning, detailed promoter analysis, study of heterologous gene expression, and comparative analysis of the phylogenetic trees of aphA6 and of the bacterial hosts, we found that aphA6 originated in Acinetobacter guillouiae, an amikacin-susceptible environmental species. The gene conferred, upon mobilization, high-level resistance to the new hosts. This work stresses that nonpathogenic bacteria can act as reservoirs of resistance determinants, and it provides an example of the use of a genomic library to study the origin and dissemination of an antibiotic resistance gene to human pathogens.
Broad Institute of Harvard and MIT Cambridge Massachusetts USA
EA4043 Faculté de Pharmacie Université Paris Sud Châtenay Malabry France
Institut Pasteur Unité des Agents Antibactériens Paris France
Laboratory of Bacterial Genetics National Institute of Public Health Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15022953
- 003
- CZ-PrNML
- 005
- 20160309110339.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1128/mBio.01972-14 $2 doi
- 035 __
- $a (PubMed)25336457
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Yoon, Eun-Jeong $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France.
- 245 10
- $a Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI / $c EJ. Yoon, S. Goussard, M. Touchon, L. Krizova, G. Cerqueira, C. Murphy, T. Lambert, C. Grillot-Courvalin, A. Nemec, P. Courvalin,
- 520 9_
- $a The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a -35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. Importance: We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before disseminating to phylogenetically distant genera pathogenic for humans. Using a combination of whole-genome sequencing of a collection of Acinetobacter spp. covering the breadth of the known taxonomic diversity of the genus, gene cloning, detailed promoter analysis, study of heterologous gene expression, and comparative analysis of the phylogenetic trees of aphA6 and of the bacterial hosts, we found that aphA6 originated in Acinetobacter guillouiae, an amikacin-susceptible environmental species. The gene conferred, upon mobilization, high-level resistance to the new hosts. This work stresses that nonpathogenic bacteria can act as reservoirs of resistance determinants, and it provides an example of the use of a genomic library to study the origin and dissemination of an antibiotic resistance gene to human pathogens.
- 650 _2
- $a Acinetobacter $x účinky léků $x enzymologie $x genetika $x izolace a purifikace $7 D000150
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a aminoglykosidy $x farmakologie $7 D000617
- 650 _2
- $a antibakteriální látky $x farmakologie $7 D000900
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a konjugace genetická $7 D003227
- 650 _2
- $a bakteriální léková rezistence $7 D024881
- 650 _2
- $a mikrobiologie životního prostředí $7 D004783
- 650 _2
- $a Escherichia coli $x enzymologie $x genetika $7 D004926
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a přenos genů horizontální $7 D022761
- 650 _2
- $a rozptýlené repetitivní sekvence $7 D020071
- 650 _2
- $a kanamycinkinasa $x genetika $7 D019868
- 650 _2
- $a mikrobiální testy citlivosti $7 D008826
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a promotorové oblasti (genetika) $7 D011401
- 650 _2
- $a sekvenční homologie $7 D017385
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Goussard, Sylvie $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France.
- 700 1_
- $a Touchon, Marie
- 700 1_
- $a Krizova, Lenka $u Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic.
- 700 1_
- $a Cerqueira, Gustavo $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
- 700 1_
- $a Murphy, Cheryl $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
- 700 1_
- $a Lambert, Thierry $u EA4043, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France.
- 700 1_
- $a Grillot-Courvalin, Catherine $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France.
- 700 1_
- $a Nemec, Alexandr $u Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic.
- 700 1_
- $a Courvalin, Patrice $u Institut Pasteur, Unité des Agents Antibactériens, Paris, France patrice.courvalin@pasteur.fr.
- 773 0_
- $w MED00188129 $t mBio $x 2150-7511 $g Roč. 5, č. 5 (2014), s. e01972-14
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25336457 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20160309110354 $b ABA008
- 999 __
- $a ok $b bmc $g 1083292 $s 905946
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 5 $c 5 $d e01972-14 $i 2150-7511 $m mBio $n MBio $x MED00188129
- LZP __
- $a Pubmed-20150709