-
Something wrong with this record ?
In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei
P. Houdek, A. Sumová,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2006
Free Medical Journals
from 2006
Public Library of Science (PLoS)
from 2006
PubMed Central
from 2006
Europe PubMed Central
from 2006
ProQuest Central
from 2006-12-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-10-01
Open Access Digital Library
from 2006-01-01
Medline Complete (EBSCOhost)
from 2008-01-01
Nursing & Allied Health Database (ProQuest)
from 2006-12-01
Health & Medicine (ProQuest)
from 2006-12-01
Public Health Database (ProQuest)
from 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
from 2006
- MeSH
- Circadian Rhythm Signaling Peptides and Proteins genetics MeSH
- Circadian Rhythm genetics MeSH
- Rats MeSH
- Suprachiasmatic Nucleus metabolism physiology MeSH
- Fetus metabolism physiology MeSH
- Rats, Wistar MeSH
- Transcriptome * MeSH
- Gene Expression Regulation, Developmental * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The mammalian suprachiasmatic nuclei (SCN) and their intrinsic rhythmicity develop gradually during ontogenesis. In the rat, the SCN forms between embryonic day (E) 14 and E17, with gestation terminating at E21-22. Overt SCN rhythmicity is already present in the late embryonic stage. The aim of the present study was to determine when the fetal SCN clock develops in vivo and whether overt rhythmicity results from a functional fetal clock. To achieve this goal, the prenatal development of rhythmic expression of clock genes was measured with a more sensitive method for detection of the clock gene expression than previously. Fetal SCN were collected at 3 h intervals during the 24 h period on E19 and E21 by laser dissection and expression of clock genes (Per2, Nr1d1 and Bmal1) and genes related to cellular activity (c-fos, Avp and Vip) was measured by qRT PCR. At E19, the expression of canonical clock genes Per2 and Bmal1 was not rhythmic; however, the expression of all other studied genes followed clear circadian rhythms. At E21, Per2 and Bmal1 expression exhibited low amplitude but significant rhythmicity. From E19 to E21, the levels of the non-rhythmic transcripts (Per2 and Bmal1) decreased; however, the levels of the rhythmic transcripts (Nr1d1, c-fos, Avp and Vip) increased. In summary, these data demonstrate that at E19, rhythms in Per2 and Bmal1 expression were absent in the fetal SCN; however, the expression of Nr1d1 and other genes related to cellular activity was driven rhythmically. Therefore, at the early stage in vivo, the developing fetal SCN clock could theoretically be entrained by oscillation of Nr1d1 which may be driven by the maternal rather than fetal circadian system.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023007
- 003
- CZ-PrNML
- 005
- 20150709122711.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0107360 $2 doi
- 035 __
- $a (PubMed)25255311
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Houdek, Pavel $u Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 245 10
- $a In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei / $c P. Houdek, A. Sumová,
- 520 9_
- $a The mammalian suprachiasmatic nuclei (SCN) and their intrinsic rhythmicity develop gradually during ontogenesis. In the rat, the SCN forms between embryonic day (E) 14 and E17, with gestation terminating at E21-22. Overt SCN rhythmicity is already present in the late embryonic stage. The aim of the present study was to determine when the fetal SCN clock develops in vivo and whether overt rhythmicity results from a functional fetal clock. To achieve this goal, the prenatal development of rhythmic expression of clock genes was measured with a more sensitive method for detection of the clock gene expression than previously. Fetal SCN were collected at 3 h intervals during the 24 h period on E19 and E21 by laser dissection and expression of clock genes (Per2, Nr1d1 and Bmal1) and genes related to cellular activity (c-fos, Avp and Vip) was measured by qRT PCR. At E19, the expression of canonical clock genes Per2 and Bmal1 was not rhythmic; however, the expression of all other studied genes followed clear circadian rhythms. At E21, Per2 and Bmal1 expression exhibited low amplitude but significant rhythmicity. From E19 to E21, the levels of the non-rhythmic transcripts (Per2 and Bmal1) decreased; however, the levels of the rhythmic transcripts (Nr1d1, c-fos, Avp and Vip) increased. In summary, these data demonstrate that at E19, rhythms in Per2 and Bmal1 expression were absent in the fetal SCN; however, the expression of Nr1d1 and other genes related to cellular activity was driven rhythmically. Therefore, at the early stage in vivo, the developing fetal SCN clock could theoretically be entrained by oscillation of Nr1d1 which may be driven by the maternal rather than fetal circadian system.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a cirkadiánní rytmus $x genetika $7 D002940
- 650 _2
- $a cirkadiánní rytmus - signální peptidy a proteiny $x genetika $7 D056925
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a plod $x metabolismus $x fyziologie $7 D005333
- 650 12
- $a vývojová regulace genové exprese $7 D018507
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a nucleus suprachiasmaticus $x metabolismus $x fyziologie $7 D013493
- 650 12
- $a transkriptom $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sumová, Alena $u Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 9, č. 9 (2014), s. e107360
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25255311 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150709122731 $b ABA008
- 999 __
- $a ok $b bmc $g 1083346 $s 906000
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 9 $c 9 $d e107360 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20150709