-
Je něco špatně v tomto záznamu ?
Age trajectories of mortality from all diseases in the six most populated countries of the South America during the last decades
J. Dolejs,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1997-01-01 do 2019-01-31
Medline Complete (EBSCOhost)
od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do 2019-01-31
- MeSH
- lidé MeSH
- mortalita trendy MeSH
- teoretické modely * MeSH
- věkové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Jižní Amerika MeSH
Age trajectories of total mortality represent an irreplaceable source of information about aging. In principle, age affects mortality from all diseases differently than it affects mortality from external causes. External causes (accidents) are excluded here from all causes, and the resultant category "all-diseases" is tested as a helpful tool to better understand the relationship between mortality and age. Age trajectories of all-diseases mortality are studied in the six most populated countries of the South America during 1996-2010. The numbers of deaths for specific causes of death are extracted from the database of WHO, where the ICD-10 revision is used. The all-diseases mortality shows a strong minimum, which is hidden in total mortality. Two simple deterministic models fit the age trajectories of all-diseases mortality. The inverse proportion between mortality and age fits the mortality decreases up to minimum value in all six countries. All previous models describing mortality decline after birth are discussed. Theoretical relationships are derived between the parameter in the first model and standard mortality indicators: Infant mortality, Neonatal mortality, and Postneonatal mortality. The Gompertz model extended with a small positive quadratic element fit the age trajectories of all-diseases mortality after the age of 10 years.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023131
- 003
- CZ-PrNML
- 005
- 20150729121215.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11538-014-0005-0 $2 doi
- 035 __
- $a (PubMed)25124764
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dolejs, Josef $u Department of Informatics and Quantitative Methods, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic, djosef@post.cz.
- 245 10
- $a Age trajectories of mortality from all diseases in the six most populated countries of the South America during the last decades / $c J. Dolejs,
- 520 9_
- $a Age trajectories of total mortality represent an irreplaceable source of information about aging. In principle, age affects mortality from all diseases differently than it affects mortality from external causes. External causes (accidents) are excluded here from all causes, and the resultant category "all-diseases" is tested as a helpful tool to better understand the relationship between mortality and age. Age trajectories of all-diseases mortality are studied in the six most populated countries of the South America during 1996-2010. The numbers of deaths for specific causes of death are extracted from the database of WHO, where the ICD-10 revision is used. The all-diseases mortality shows a strong minimum, which is hidden in total mortality. Two simple deterministic models fit the age trajectories of all-diseases mortality. The inverse proportion between mortality and age fits the mortality decreases up to minimum value in all six countries. All previous models describing mortality decline after birth are discussed. Theoretical relationships are derived between the parameter in the first model and standard mortality indicators: Infant mortality, Neonatal mortality, and Postneonatal mortality. The Gompertz model extended with a small positive quadratic element fit the age trajectories of all-diseases mortality after the age of 10 years.
- 650 _2
- $a věkové faktory $7 D000367
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a teoretické modely $7 D008962
- 650 _2
- $a mortalita $x trendy $7 D009026
- 651 _2
- $a Jižní Amerika $7 D013020
- 655 _2
- $a časopisecké články $7 D016428
- 773 0_
- $w MED00000927 $t Bulletin of mathematical biology $x 1522-9602 $g Roč. 76, č. 9 (2014), s. 2144-74
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25124764 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150729121302 $b ABA008
- 999 __
- $a ok $b bmc $g 1083469 $s 906124
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 76 $c 9 $d 2144-74 $i 1522-9602 $m Bulletin of mathematical biology $n Bull Math Biol $x MED00000927
- LZP __
- $a Pubmed-20150709