-
Je něco špatně v tomto záznamu ?
Evolutionary dynamics of infectious diseases in finite populations
J. Humplik, AL. Hill, MA. Nowak,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologická evoluce * MeSH
- hustota populace * MeSH
- infekční nemoci epidemiologie patofyziologie MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- logistické modely * MeSH
- počítačová simulace MeSH
- selekce (genetika) * MeSH
- virulence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In infectious disease epidemiology the basic reproductive ratio, R0, is defined as the average number of new infections caused by a single infected individual in a fully susceptible population. Many models describing competition for hosts between non-interacting pathogen strains in an infinite population lead to the conclusion that selection favors invasion of new strains if and only if they have higher R0 values than the resident. Here we demonstrate that this picture fails in finite populations. Using a simple stochastic SIS model, we show that in general there is no analogous optimization principle. We find that successive invasions may in some cases lead to strains that infect a smaller fraction of the host population, and that mutually invasible pathogen strains exist. In the limit of weak selection we demonstrate that an optimization principle does exist, although it differs from R0 maximization. For strains with very large R0, we derive an expression for this local fitness function and use it to establish a lower bound for the error caused by neglecting stochastic effects. Furthermore, we apply this weak selection limit to investigate the selection dynamics in the presence of a trade-off between the virulence and the transmission rate of a pathogen.
Faculty of Mathematics and Physics Charles University Prague Czech Republic
Institute of Science and Technology Austria Am Campus 1 3400 Klosterneuburg Austria
Program for Evolutionary Dynamics Harvard University One Brattle Square Cambridge MA 02138 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023263
- 003
- CZ-PrNML
- 005
- 20150729101917.0
- 007
- ta
- 008
- 150709s2014 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jtbi.2014.06.039 $2 doi
- 035 __
- $a (PubMed)25016046
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Humplik, Jan $u Program for Evolutionary Dynamics, Harvard University, One Brattle Square, Cambridge, MA 02138, USA; Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic. Electronic address: jhumplik@ist.ac.at.
- 245 10
- $a Evolutionary dynamics of infectious diseases in finite populations / $c J. Humplik, AL. Hill, MA. Nowak,
- 520 9_
- $a In infectious disease epidemiology the basic reproductive ratio, R0, is defined as the average number of new infections caused by a single infected individual in a fully susceptible population. Many models describing competition for hosts between non-interacting pathogen strains in an infinite population lead to the conclusion that selection favors invasion of new strains if and only if they have higher R0 values than the resident. Here we demonstrate that this picture fails in finite populations. Using a simple stochastic SIS model, we show that in general there is no analogous optimization principle. We find that successive invasions may in some cases lead to strains that infect a smaller fraction of the host population, and that mutually invasible pathogen strains exist. In the limit of weak selection we demonstrate that an optimization principle does exist, although it differs from R0 maximization. For strains with very large R0, we derive an expression for this local fitness function and use it to establish a lower bound for the error caused by neglecting stochastic effects. Furthermore, we apply this weak selection limit to investigate the selection dynamics in the presence of a trade-off between the virulence and the transmission rate of a pathogen.
- 650 12
- $a biologická evoluce $7 D005075
- 650 _2
- $a infekční nemoci $x epidemiologie $x patofyziologie $7 D003141
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a interakce hostitele a patogenu $7 D054884
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a logistické modely $7 D016015
- 650 12
- $a hustota populace $7 D011156
- 650 12
- $a selekce (genetika) $7 D012641
- 650 _2
- $a virulence $7 D014774
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hill, Alison L $u Program for Evolutionary Dynamics, Harvard University, One Brattle Square, Cambridge, MA 02138, USA; Biophysics Program and Harvard-MIT Division of Health Sciences and Technology, Harvard University, Cambridge, MA 02138, USA. Electronic address: alhill@fas.harvard.edu.
- 700 1_
- $a Nowak, Martin A $u Program for Evolutionary Dynamics, Harvard University, One Brattle Square, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.
- 773 0_
- $w MED00003018 $t Journal of theoretical biology $x 1095-8541 $g Roč. 360, č. - (2014), s. 149-62
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25016046 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150729102003 $b ABA008
- 999 __
- $a ok $b bmc $g 1083601 $s 906256
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 360 $c - $d 149-62 $i 1095-8541 $m Journal of theoretical biology $n J Theor Biol $x MED00003018
- LZP __
- $a Pubmed-20150709