Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Electrolyte system strategies for anionic ITP with ESI-MS detection. 3. The ITP spacer technique in moving-boundary systems and configurations with two self-maintained ITP subsystems

P. Gebauer, Z. Malá, P. Boček,

. 2014 ; 35 (5) : 746-54.

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15023613

This contribution is the third part of the project on strategies used in the selection and tuning of electrolyte systems for anionic ITP with ESI-MS detection. The strategy presented here is based on the creation of self-maintained ITP subsystems in moving-boundary systems and describes two new principal approaches offering physical separation of analyte zones from their common ITP stack and/or simultaneous selective stacking of two different analyte groups. Both strategic directions are based on extending the number of components forming the electrolyte system by adding a third suitable anion. The first method is the application of the spacer technique to moving-boundary anionic ITP systems, the second method is a technique utilizing a moving-boundary ITP system in which two ITP subsystems exist and move with mutually different velocities. It is essential for ESI detection that both methods can be based on electrolyte systems containing only several simple chemicals, such as simple volatile organic acids (formic and acetic) and their ammonium salts. The properties of both techniques are defined theoretically and discussed from the viewpoint of their applicability to trace analysis by ITP-ESI-MS. Examples of system design for selected model separations of preservatives and pharmaceuticals illustrate the validity of the theoretical model and application potential of the proposed techniques by both computer simulations and experiments. Both new methods enhance the application range of ITP-MS and may be beneficial particularly for complex multicomponent samples or for analytes with identical molecular mass.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023613
003      
CZ-PrNML
005      
20150730100321.0
007      
ta
008      
150709s2014 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/elps.201300476 $2 doi
035    __
$a (PubMed)24301968
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Gebauer, Petr $u Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, Brno, Czech Republic.
245    10
$a Electrolyte system strategies for anionic ITP with ESI-MS detection. 3. The ITP spacer technique in moving-boundary systems and configurations with two self-maintained ITP subsystems / $c P. Gebauer, Z. Malá, P. Boček,
520    9_
$a This contribution is the third part of the project on strategies used in the selection and tuning of electrolyte systems for anionic ITP with ESI-MS detection. The strategy presented here is based on the creation of self-maintained ITP subsystems in moving-boundary systems and describes two new principal approaches offering physical separation of analyte zones from their common ITP stack and/or simultaneous selective stacking of two different analyte groups. Both strategic directions are based on extending the number of components forming the electrolyte system by adding a third suitable anion. The first method is the application of the spacer technique to moving-boundary anionic ITP systems, the second method is a technique utilizing a moving-boundary ITP system in which two ITP subsystems exist and move with mutually different velocities. It is essential for ESI detection that both methods can be based on electrolyte systems containing only several simple chemicals, such as simple volatile organic acids (formic and acetic) and their ammonium salts. The properties of both techniques are defined theoretically and discussed from the viewpoint of their applicability to trace analysis by ITP-ESI-MS. Examples of system design for selected model separations of preservatives and pharmaceuticals illustrate the validity of the theoretical model and application potential of the proposed techniques by both computer simulations and experiments. Both new methods enhance the application range of ITP-MS and may be beneficial particularly for complex multicomponent samples or for analytes with identical molecular mass.
650    _2
$a anionty $7 D000838
650    _2
$a počítačová simulace $7 D003198
650    _2
$a elektrolyty $x chemie $7 D004573
650    _2
$a elektroforéza $x přístrojové vybavení $x metody $7 D004586
650    _2
$a elektroforéza kapilární $x metody $7 D019075
650    _2
$a hmotnostní spektrometrie s elektrosprejovou ionizací $x metody $7 D021241
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Malá, Zdena
700    1_
$a Boček, Petr
773    0_
$w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 35, č. 5 (2014), s. 746-54
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24301968 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150730100408 $b ABA008
999    __
$a ok $b bmc $g 1083950 $s 906606
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 35 $c 5 $d 746-54 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...