• Je něco špatně v tomto záznamu ?

Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease

C. Estarellas, M. Otyepka, J. Koča, P. Banáš, M. Krepl, J. Šponer,

. 2015 ; 1850 (5) : 1072-90. (Complete edition) [pub] 20141024

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031665

BACKGROUND: Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS: We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total). RESULTS: The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS: We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE: Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031665
003      
CZ-PrNML
005      
20151007112030.0
007      
ta
008      
151005s2015 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbagen.2014.10.021 $2 doi
035    __
$a (PubMed)25450173
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Estarellas, Carolina $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
245    10
$a Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease / $c C. Estarellas, M. Otyepka, J. Koča, P. Banáš, M. Krepl, J. Šponer,
520    9_
$a BACKGROUND: Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS: We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total). RESULTS: The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS: We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE: Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
650    _2
$a vazebná místa $7 D001665
650    _2
$a Cas proteiny $x chemie $x metabolismus $7 D064130
650    12
$a CRISPR-Cas systémy $7 D064113
650    _2
$a katalytická doména $7 D020134
650    12
$a sekvence CRISPR $7 D064112
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a endoribonukleasy $x chemie $x metabolismus $7 D004722
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a vazba proteinů $7 D011485
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Otyepka, Michal $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
700    1_
$a Koča, Jaroslav $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
700    1_
$a Banáš, Pavel $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
700    1_
$a Krepl, Miroslav $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
700    1_
$a Šponer, Jiří $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic. Electronic address: sponer@ncbr.muni.cz.
773    0_
$w MED00009314 $t Biochimica et biophysica acta. Complete edition $x 0006-3002 $g Roč. 1850, č. 5 (2015), s. 1072-90
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25450173 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151007112216 $b ABA008
999    __
$a ok $b bmc $g 1092541 $s 914791
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 1850 $c 5 $d 1072-90 $e 20141024 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314 $o Complete edition
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...