-
Je něco špatně v tomto záznamu ?
Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease
C. Estarellas, M. Otyepka, J. Koča, P. Banáš, M. Krepl, J. Šponer,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Cas proteiny chemie metabolismus MeSH
- časové faktory MeSH
- CRISPR-Cas systémy * MeSH
- endoribonukleasy chemie metabolismus MeSH
- katalytická doména MeSH
- krystalografie rentgenová MeSH
- sekvence CRISPR * MeSH
- simulace molekulární dynamiky * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS: We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total). RESULTS: The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS: We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE: Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031665
- 003
- CZ-PrNML
- 005
- 20151007112030.0
- 007
- ta
- 008
- 151005s2015 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbagen.2014.10.021 $2 doi
- 035 __
- $a (PubMed)25450173
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Estarellas, Carolina $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
- 245 10
- $a Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease / $c C. Estarellas, M. Otyepka, J. Koča, P. Banáš, M. Krepl, J. Šponer,
- 520 9_
- $a BACKGROUND: Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS: We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total). RESULTS: The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS: We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE: Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a Cas proteiny $x chemie $x metabolismus $7 D064130
- 650 12
- $a CRISPR-Cas systémy $7 D064113
- 650 _2
- $a katalytická doména $7 D020134
- 650 12
- $a sekvence CRISPR $7 D064112
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a endoribonukleasy $x chemie $x metabolismus $7 D004722
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Otyepka, Michal $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Koča, Jaroslav $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
- 700 1_
- $a Banáš, Pavel $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Krepl, Miroslav $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
- 700 1_
- $a Šponer, Jiří $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic. Electronic address: sponer@ncbr.muni.cz.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta. Complete edition $x 0006-3002 $g Roč. 1850, č. 5 (2015), s. 1072-90
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25450173 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151007112216 $b ABA008
- 999 __
- $a ok $b bmc $g 1092541 $s 914791
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 1850 $c 5 $d 1072-90 $e 20141024 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314 $o Complete edition
- LZP __
- $a Pubmed-20151005