Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences

M. Touchon, J. Cury, EJ. Yoon, L. Krizova, GC. Cerqueira, C. Murphy, M. Feldgarden, J. Wortman, D. Clermont, T. Lambert, C. Grillot-Courvalin, A. Nemec, P. Courvalin, EP. Rocha,

. 2014 ; 6 (10) : 2866-2882. [pub] 20141013

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031787

Grantová podpora
NT14466 MZ0 CEP - Centrální evidence projektů

Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031787
003      
CZ-PrNML
005      
20190703135620.0
007      
ta
008      
151005s2014 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/gbe/evu225 $2 doi
035    __
$a (PubMed)25313016
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Touchon, Marie $u Microbial Evolutionary Genomics, Institut Pasteur, Paris, France CNRS, UMR3525, Paris, France.
245    14
$a The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences / $c M. Touchon, J. Cury, EJ. Yoon, L. Krizova, GC. Cerqueira, C. Murphy, M. Feldgarden, J. Wortman, D. Clermont, T. Lambert, C. Grillot-Courvalin, A. Nemec, P. Courvalin, EP. Rocha,
520    9_
$a Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens.
650    _2
$a Acinetobacter $x genetika $7 D000150
650    _2
$a sekvence CRISPR $x genetika $7 D064112
650    _2
$a genom bakteriální $x genetika $7 D016680
650    _2
$a genomika $x metody $7 D023281
650    _2
$a rozptýlené repetitivní sekvence $x genetika $7 D020071
650    _2
$a fylogeneze $7 D010802
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Cury, Jean $u Microbial Evolutionary Genomics, Institut Pasteur, Paris, France CNRS, UMR3525, Paris, France.
700    1_
$a Yoon, Eun-Jeong $u Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
700    1_
$a Křížová, Lenka $u Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic. $7 _AN046297
700    1_
$a Cerqueira, Gustavo C $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
700    1_
$a Murphy, Cheryl $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
700    1_
$a Feldgarden, Michael $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
700    1_
$a Wortman, Jennifer $u Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
700    1_
$a Clermont, Dominique $u Collection de l'Institut Pasteur, Institut Pasteur, Paris, France.
700    1_
$a Lambert, Thierry $u Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
700    1_
$a Grillot-Courvalin, Catherine $u Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
700    1_
$a Němec, Alexandr $u Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic. anemec@szu.cz patrice.courvalin@pasteur.fr erocha@pasteur.fr. $7 _AN062080
700    1_
$a Courvalin, Patrice $u Unité des Agents Antibactériens, Institut Pasteur, Paris, France anemec@szu.cz patrice.courvalin@pasteur.fr erocha@pasteur.fr.
700    1_
$a Rocha, Eduardo P C $u Microbial Evolutionary Genomics, Institut Pasteur, Paris, France CNRS, UMR3525, Paris, France anemec@szu.cz patrice.courvalin@pasteur.fr erocha@pasteur.fr.
773    0_
$w MED00170504 $t Genome biology and evolution $x 1759-6653 $g Roč. 6, č. 10 (2014), s. 2866-2882
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25313016 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20190703135810 $b ABA008
999    __
$a ok $b bmc $g 1092663 $s 914913
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 6 $c 10 $d 2866-2882 $e 20141013 $i 1759-6653 $m Genome biology and evolution $n Genome Biol Evol $x MED00170504
GRA    __
$a NT14466 $p MZ0
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...