• Je něco špatně v tomto záznamu ?

Independent component analysis and decision trees for ECG holter recording de-noising

J. Kuzilek, V. Kremen, F. Soucek, L. Lhotska,

. 2014 ; 9 (6) : e98450. [pub] 20140606

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15032003

We have developed a method focusing on ECG signal de-noising using Independent component analysis (ICA). This approach combines JADE source separation and binary decision tree for identification and subsequent ECG noise removal. In order to to test the efficiency of this method comparison to standard filtering a wavelet- based de-noising method was used. Freely data available at Physionet medical data storage were evaluated. Evaluation criteria was root mean square error (RMSE) between original ECG and filtered data contaminated with artificial noise. Proposed algorithm achieved comparable result in terms of standard noises (power line interference, base line wander, EMG), but noticeably significantly better results were achieved when uncommon noise (electrode cable movement artefact) were compared.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15032003
003      
CZ-PrNML
005      
20151005124848.0
007      
ta
008      
151005s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0098450 $2 doi
035    __
$a (PubMed)24905359
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kuzilek, Jakub $u Department of Cybernetics, FEE, CTU in Prague, Prague, Czech Republic.
245    10
$a Independent component analysis and decision trees for ECG holter recording de-noising / $c J. Kuzilek, V. Kremen, F. Soucek, L. Lhotska,
520    9_
$a We have developed a method focusing on ECG signal de-noising using Independent component analysis (ICA). This approach combines JADE source separation and binary decision tree for identification and subsequent ECG noise removal. In order to to test the efficiency of this method comparison to standard filtering a wavelet- based de-noising method was used. Freely data available at Physionet medical data storage were evaluated. Evaluation criteria was root mean square error (RMSE) between original ECG and filtered data contaminated with artificial noise. Proposed algorithm achieved comparable result in terms of standard noises (power line interference, base line wander, EMG), but noticeably significantly better results were achieved when uncommon noise (electrode cable movement artefact) were compared.
650    _2
$a algoritmy $7 D000465
650    _2
$a interpretace statistických dat $7 D003627
650    _2
$a rozhodovací stromy $7 D003663
650    _2
$a elektrokardiografie ambulantní $x metody $7 D015716
650    _2
$a analýza hlavních komponent $7 D025341
650    12
$a poměr signál - šum $7 D059629
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kremen, Vaclav $u Department of Cybernetics, FEE, CTU in Prague, Prague, Czech Republic; Czech Institute of Informatics, Robotics, and Cybernetics, CTU in Prague, Prague, Czech Republic.
700    1_
$a Soucek, Filip $u Department of Cardiovascular Diseases, ICRC, St. Anne's Hospital in Brno, Brno, Czech Republic.
700    1_
$a Lhotska, Lenka $u Department of Cybernetics, FEE, CTU in Prague, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 9, č. 6 (2014), s. e98450
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24905359 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151005125031 $b ABA008
999    __
$a ok $b bmc $g 1092879 $s 915129
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 9 $c 6 $d e98450 $e 20140606 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...