-
Je něco špatně v tomto záznamu ?
Energy complexity of recurrent neural networks
J. Síma,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24555455
DOI
10.1162/neco_a_00579
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- algoritmy MeSH
- mozek fyziologie MeSH
- neuronové sítě * MeSH
- neurony fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently a new so-called energy complexity measure has been introduced and studied for feedforward perceptron networks. This measure is inspired by the fact that biological neurons require more energy to transmit a spike than not to fire, and the activity of neurons in the brain is quite sparse, with only about 1% of neurons firing. In this letter, we investigate the energy complexity of recurrent networks, which counts the number of active neurons at any time instant of a computation. We prove that any deterministic finite automaton with m states can be simulated by a neural network of optimal size [Formula: see text] with the time overhead of [Formula: see text] per one input bit, using the energy O(e), for any e such that [Formula: see text] and e=O(s), which shows the time-energy trade-off in recurrent networks. In addition, for the time overhead [Formula: see text] satisfying [Formula: see text], we obtain the lower bound of [Formula: see text] on the energy of such a simulation for some constant c>0 and for infinitely many s.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15032061
- 003
- CZ-PrNML
- 005
- 20151014101309.0
- 007
- ta
- 008
- 151005s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1162/NECO_a_00579 $2 doi
- 035 __
- $a (PubMed)24555455
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Síma, Jiří $u Institute of Computer Science, Academy of Sciences of the Czech Republic, P. O. Box 5, 18207 Prague 8, Czech Republic sima@cs.cas.cz.
- 245 10
- $a Energy complexity of recurrent neural networks / $c J. Síma,
- 520 9_
- $a Recently a new so-called energy complexity measure has been introduced and studied for feedforward perceptron networks. This measure is inspired by the fact that biological neurons require more energy to transmit a spike than not to fire, and the activity of neurons in the brain is quite sparse, with only about 1% of neurons firing. In this letter, we investigate the energy complexity of recurrent networks, which counts the number of active neurons at any time instant of a computation. We prove that any deterministic finite automaton with m states can be simulated by a neural network of optimal size [Formula: see text] with the time overhead of [Formula: see text] per one input bit, using the energy O(e), for any e such that [Formula: see text] and e=O(s), which shows the time-energy trade-off in recurrent networks. In addition, for the time overhead [Formula: see text] satisfying [Formula: see text], we obtain the lower bound of [Formula: see text] on the energy of such a simulation for some constant c>0 and for infinitely many s.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a mozek $x fyziologie $7 D001921
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 773 0_
- $w MED00003480 $t Neural computation $x 1530-888X $g Roč. 26, č. 5 (2014), s. 953-73
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24555455 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151014101459 $b ABA008
- 999 __
- $a ok $b bmc $g 1092937 $s 915187
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 26 $c 5 $d 953-73 $e 20140220 $i 1530-888X $m Neural computation $n Neural Comput $x MED00003480
- LZP __
- $a Pubmed-20151005