-
Je něco špatně v tomto záznamu ?
From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis
AO. Gaca, P. Kudrin, C. Colomer-Winter, J. Beljantseva, K. Liu, B. Anderson, JD. Wang, D. Rejman, K. Potrykus, M. Cashel, V. Hauryliuk, JA. Lemos,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
NLK
Free Medical Journals
od 1916 do Před 6 měsíci
Freely Accessible Science Journals
od 1916 do Před 6 měsíci
PubMed Central
od 1916 do Před 1 rokem
Europe PubMed Central
od 1916 do Před 6 měsíci
Open Access Digital Library
od 1916-01-01
Open Access Digital Library
od 1916-01-01
PubMed
26124242
DOI
10.1128/jb.00324-15
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- deoxyguanosin analogy a deriváty biosyntéza chemie MeSH
- dipeptidy biosyntéza chemie MeSH
- Enterococcus faecalis účinky léků enzymologie genetika metabolismus MeSH
- fyziologický stres MeSH
- guanosindifosfát metabolismus MeSH
- guanosinpentafosfát metabolismus MeSH
- guanosintetrafosfát biosyntéza MeSH
- guanosintrifosfát metabolismus MeSH
- hořčík MeSH
- ligasy genetika metabolismus MeSH
- molekulární struktura MeSH
- regulace genové exprese enzymů MeSH
- regulace genové exprese u bakterií MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
UNLABELLED: The bacterial stringent response (SR) is a conserved stress tolerance mechanism that orchestrates physiological alterations to enhance cell survival. This response is mediated by the intracellular accumulation of the alarmones pppGpp and ppGpp, collectively called (p)ppGpp. In Enterococcus faecalis, (p)ppGpp metabolism is carried out by the bifunctional synthetase/hydrolase E. faecalis Rel (RelEf) and the small alarmone synthetase (SAS) RelQEf. Although Rel is the main enzyme responsible for SR activation in Firmicutes, there is emerging evidence that SASs can make important contributions to bacterial homeostasis. Here, we showed that RelQEf synthesizes ppGpp more efficiently than pppGpp without the need for ribosomes, tRNA, or mRNA. In addition to (p)ppGpp synthesis from GDP and GTP, RelQEf also efficiently utilized GMP to form GMP 3'-diphosphate (pGpp). Based on this observation, we sought to determine if pGpp exerts regulatory effects on cellular processes affected by (p)ppGpp. We found that pGpp, like (p)ppGpp, strongly inhibits the activity of E. faecalis enzymes involved in GTP biosynthesis and, to a lesser extent, transcription of rrnB by Escherichia coli RNA polymerase. Activation of E. coli RelA synthetase activity was observed in the presence of both pGpp and ppGpp, while RelQEf was activated only by ppGpp. Furthermore, enzymatic activity of RelQEf is insensitive to relacin, a (p)ppGpp analog developed as an inhibitor of "long" RelA/SpoT homolog (RSH) enzymes. We conclude that pGpp can likely function as a bacterial alarmone with target-specific regulatory effects that are similar to what has been observed for (p)ppGpp. IMPORTANCE: Accumulation of the nucleotide second messengers (p)ppGpp in bacteria is an important signal regulating genetic and physiological networks contributing to stress tolerance, antibiotic persistence, and virulence. Understanding the function and regulation of the enzymes involved in (p)ppGpp turnover is therefore critical for designing strategies to eliminate the protective effects of this molecule. While characterizing the (p)ppGpp synthetase RelQ of Enterococcus faecalis (RelQEf), we found that, in addition to (p)ppGpp, RelQEf is an efficient producer of pGpp (GMP 3'-diphosphate). In vitro analysis revealed that pGpp exerts complex, target-specific effects on processes known to be modulated by (p)ppGpp. These findings provide a new regulatory feature of RelQEf and suggest that pGpp may represent a new member of the (pp)pGpp family of alarmones.
Department of Bacteriology University of Wisconsin Madison Madison Wisconsin USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000101
- 003
- CZ-PrNML
- 005
- 20160126093317.0
- 007
- ta
- 008
- 160108s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1128/JB.00324-15 $2 doi
- 035 __
- $a (PubMed)26124242
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Gaca, Anthony O $u Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
- 245 10
- $a From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis / $c AO. Gaca, P. Kudrin, C. Colomer-Winter, J. Beljantseva, K. Liu, B. Anderson, JD. Wang, D. Rejman, K. Potrykus, M. Cashel, V. Hauryliuk, JA. Lemos,
- 520 9_
- $a UNLABELLED: The bacterial stringent response (SR) is a conserved stress tolerance mechanism that orchestrates physiological alterations to enhance cell survival. This response is mediated by the intracellular accumulation of the alarmones pppGpp and ppGpp, collectively called (p)ppGpp. In Enterococcus faecalis, (p)ppGpp metabolism is carried out by the bifunctional synthetase/hydrolase E. faecalis Rel (RelEf) and the small alarmone synthetase (SAS) RelQEf. Although Rel is the main enzyme responsible for SR activation in Firmicutes, there is emerging evidence that SASs can make important contributions to bacterial homeostasis. Here, we showed that RelQEf synthesizes ppGpp more efficiently than pppGpp without the need for ribosomes, tRNA, or mRNA. In addition to (p)ppGpp synthesis from GDP and GTP, RelQEf also efficiently utilized GMP to form GMP 3'-diphosphate (pGpp). Based on this observation, we sought to determine if pGpp exerts regulatory effects on cellular processes affected by (p)ppGpp. We found that pGpp, like (p)ppGpp, strongly inhibits the activity of E. faecalis enzymes involved in GTP biosynthesis and, to a lesser extent, transcription of rrnB by Escherichia coli RNA polymerase. Activation of E. coli RelA synthetase activity was observed in the presence of both pGpp and ppGpp, while RelQEf was activated only by ppGpp. Furthermore, enzymatic activity of RelQEf is insensitive to relacin, a (p)ppGpp analog developed as an inhibitor of "long" RelA/SpoT homolog (RSH) enzymes. We conclude that pGpp can likely function as a bacterial alarmone with target-specific regulatory effects that are similar to what has been observed for (p)ppGpp. IMPORTANCE: Accumulation of the nucleotide second messengers (p)ppGpp in bacteria is an important signal regulating genetic and physiological networks contributing to stress tolerance, antibiotic persistence, and virulence. Understanding the function and regulation of the enzymes involved in (p)ppGpp turnover is therefore critical for designing strategies to eliminate the protective effects of this molecule. While characterizing the (p)ppGpp synthetase RelQ of Enterococcus faecalis (RelQEf), we found that, in addition to (p)ppGpp, RelQEf is an efficient producer of pGpp (GMP 3'-diphosphate). In vitro analysis revealed that pGpp exerts complex, target-specific effects on processes known to be modulated by (p)ppGpp. These findings provide a new regulatory feature of RelQEf and suggest that pGpp may represent a new member of the (pp)pGpp family of alarmones.
- 650 _2
- $a bakteriální proteiny $x genetika $x metabolismus $7 D001426
- 650 _2
- $a deoxyguanosin $x analogy a deriváty $x biosyntéza $x chemie $7 D003849
- 650 _2
- $a dipeptidy $x biosyntéza $x chemie $7 D004151
- 650 _2
- $a Enterococcus faecalis $x účinky léků $x enzymologie $x genetika $x metabolismus $7 D013293
- 650 _2
- $a regulace genové exprese u bakterií $7 D015964
- 650 _2
- $a regulace genové exprese enzymů $7 D015971
- 650 _2
- $a guanosindifosfát $x metabolismus $7 D006153
- 650 _2
- $a guanosinpentafosfát $x metabolismus $7 D006158
- 650 _2
- $a guanosintetrafosfát $x biosyntéza $7 D006159
- 650 _2
- $a guanosintrifosfát $x metabolismus $7 D006160
- 650 _2
- $a ligasy $x genetika $x metabolismus $7 D008025
- 650 _2
- $a hořčík $7 D008274
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a fyziologický stres $7 D013312
- 650 _2
- $a substrátová specifita $7 D013379
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kudrin, Pavel $u University of Tartu, Institute of Technology, Tartu, Estonia.
- 700 1_
- $a Colomer-Winter, Cristina $u Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
- 700 1_
- $a Beljantseva, Jelena $u University of Tartu, Institute of Technology, Tartu, Estonia.
- 700 1_
- $a Liu, Kuanqing $u Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- 700 1_
- $a Anderson, Brent $u Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA. $7 gn_A_00006111
- 700 1_
- $a Wang, Jue D $u Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- 700 1_
- $a Rejman, Dominik $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic.
- 700 1_
- $a Potrykus, Katarzyna $u Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland Section on Molecular Regulation, Program in Genomics of Development, Eunice Kennedy Shriver NICHD, NIH, Bethesda, Maryland, USA.
- 700 1_
- $a Cashel, Michael $u Section on Molecular Regulation, Program in Genomics of Development, Eunice Kennedy Shriver NICHD, NIH, Bethesda, Maryland, USA.
- 700 1_
- $a Hauryliuk, Vasili $u University of Tartu, Institute of Technology, Tartu, Estonia Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå University, University Hospital Area, Umeå, Sweden vasili.hauryliuk@umu.se jose_lemos@urmc.rochester.edu.
- 700 1_
- $a Lemos, José A $u Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA vasili.hauryliuk@umu.se jose_lemos@urmc.rochester.edu.
- 773 0_
- $w MED00002537 $t Journal of bacteriology $x 1098-5530 $g Roč. 197, č. 18 (2015), s. 2908-19
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26124242 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160126093440 $b ABA008
- 999 __
- $a ok $b bmc $g 1102382 $s 924307
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 197 $c 18 $d 2908-19 $e 20150629 $i 1098-5530 $m Journal of bacteriology $n J Bacteriol $x MED00002537
- LZP __
- $a Pubmed-20160108