Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A new bibliometric index based on the shape of the citation distribution

T. Lando, L. Bertoli-Barsotti,

. 2014 ; 9 (12) : e115962. [pub] 20141226

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000422

In order to improve the h-index in terms of its accuracy and sensitivity to the form of the citation distribution, we propose the new bibliometric index [symbol in text]. The basic idea is to define, for any author with a given number of citations, an "ideal" citation distribution which represents a benchmark in terms of number of papers and number of citations per publication, and to obtain an index which increases its value when the real citation distribution approaches its ideal form. The method is very general because the ideal distribution can be defined differently according to the main objective of the index. In this paper we propose to define it by a "squared-form" distribution: this is consistent with many popular bibliometric indices, which reach their maximum value when the distribution is basically a "square". This approach generally rewards the more regular and reliable researchers, and it seems to be especially suitable for dealing with common situations such as applications for academic positions. To show the advantages of the [symbol in text]-index some mathematical properties are proved and an application to real data is proposed.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000422
003      
CZ-PrNML
005      
20160108120808.0
007      
ta
008      
160108s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0115962 $2 doi
035    __
$a (PubMed)25542026
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lando, Tommaso $u Department of Finance, VŠB Technical University of Ostrava, Ostrava, Czech Republic.
245    12
$a A new bibliometric index based on the shape of the citation distribution / $c T. Lando, L. Bertoli-Barsotti,
520    9_
$a In order to improve the h-index in terms of its accuracy and sensitivity to the form of the citation distribution, we propose the new bibliometric index [symbol in text]. The basic idea is to define, for any author with a given number of citations, an "ideal" citation distribution which represents a benchmark in terms of number of papers and number of citations per publication, and to obtain an index which increases its value when the real citation distribution approaches its ideal form. The method is very general because the ideal distribution can be defined differently according to the main objective of the index. In this paper we propose to define it by a "squared-form" distribution: this is consistent with many popular bibliometric indices, which reach their maximum value when the distribution is basically a "square". This approach generally rewards the more regular and reliable researchers, and it seems to be especially suitable for dealing with common situations such as applications for academic positions. To show the advantages of the [symbol in text]-index some mathematical properties are proved and an application to real data is proposed.
650    _2
$a algoritmy $7 D000465
650    _2
$a benchmarking $x metody $7 D019985
650    12
$a bibliometrie $7 D015706
650    _2
$a impakt faktor časopisů $7 D055811
650    _2
$a výzkumní pracovníci $7 D012108
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bertoli-Barsotti, Lucio $u Dipartimento di Scienze aziendali, economiche e metodi quantitativi, University of Bergamo, Bergamo, Italy.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 9, č. 12 (2014), s. e115962
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25542026 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160108120918 $b ABA008
999    __
$a ok $b bmc $g 1102703 $s 924628
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 9 $c 12 $d e115962 $e 20141226 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...