Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

New algorithm for EEG and EMG separation

Jan Šebek, Radoslav Bortel

. 2015 ; 45 (2) : 43-47.

Language English Country Czech Republic

Document type Research Support, Non-U.S. Gov't

The paper presents newly proposed algorithm for the blind separation of EEG and EMG sources measured by high density electrode arrays. The algorithm is based on the maximization of the variance of variances of filtered principal components. Utilized high pass filter was optimized in order to extract the information which is used by the gradient algorithm to separate New Algorithm for EEG and EMG SeparationEEG and EMG components. The performance of the algorithm was evaluated by its use for the muscular artifacts removal. Present muscular artifacts were extracted from the estimated components with the use of the previously used classifier. It is compared with other similar approaches and it is shown that the suggested algorithm achieves higher quality of the processed EEG signal especially in the case of strong muscular artifacts and is therefore useful for the preprocessing of the EEG records contaminated with the muscle activity

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc16005132
003      
CZ-PrNML
005      
20210708093828.0
007      
ta
008      
160216s2015 xr ad f 000 0|eng||
009      
AR
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Šebek, Jan $7 xx0214491 $u Dept. of Circuit Theory, Czech Technical University in Prague, Czech Republic
245    10
$a New algorithm for EEG and EMG separation / $c Jan Šebek, Radoslav Bortel
504    __
$a Literatura
520    9_
$a The paper presents newly proposed algorithm for the blind separation of EEG and EMG sources measured by high density electrode arrays. The algorithm is based on the maximization of the variance of variances of filtered principal components. Utilized high pass filter was optimized in order to extract the information which is used by the gradient algorithm to separate New Algorithm for EEG and EMG SeparationEEG and EMG components. The performance of the algorithm was evaluated by its use for the muscular artifacts removal. Present muscular artifacts were extracted from the estimated components with the use of the previously used classifier. It is compared with other similar approaches and it is shown that the suggested algorithm achieves higher quality of the processed EEG signal especially in the case of strong muscular artifacts and is therefore useful for the preprocessing of the EEG records contaminated with the muscle activity
650    12
$a algoritmy $7 D000465
650    12
$a elektromyografie $7 D004576
650    12
$a elektroencefalografie $7 D004569
650    12
$a analýza hlavních komponent $7 D025341
650    _2
$a artefakty $7 D016477
650    _2
$a statistické modely $7 D015233
650    _2
$a analýza rozptylu $7 D000704
650    _2
$a počítačová simulace $7 D003198
650    _2
$a vylepšení obrazu $7 D007089
653    00
$a svalové artefakty
653    00
$a gradient
653    00
$a BSS
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bortel, Radoslav $7 jo2017971431 $u Dept. of Circuit Theory, Czech Technical University in Prague, Czech Republic
773    0_
$t Lékař a technika $x 0301-5491 $g Roč. 45, č. 2 (2015), s. 43-47 $w MED00011033
856    41
$u https://ojs.cvut.cz/ojs/index.php/CTJ/article/view/4236/4090 $y plný text volně přístupný
910    __
$a ABA008 $b B 1367 $c 1071 b $y 4 $z 0
990    __
$a 20160215132432 $b ABA008
991    __
$a 20210708093827 $b ABA008
999    __
$a ok $b bmc $g 1107837 $s 929411
BAS    __
$a 3
BMC    __
$a 2015 $b 45 $c 2 $d 43-47 $i 0301-5491 $m Lékař a technika $n Lék. tech. $x MED00011033
LZP    __
$c NLK185 $d 20160509 $a NLK 2016-10/dk

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...