-
Je něco špatně v tomto záznamu ?
Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations
P. Stadlbauer, P. Kührová, P. Banáš, J. Koča, G. Bussi, L. Trantírek, M. Otyepka, J. Šponer,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
26433223
DOI
10.1093/nar/gkv994
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- kationty chemie MeSH
- lidé MeSH
- Oxytricha genetika MeSH
- simulace molekulární dynamiky * MeSH
- telomery chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 μs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-μs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16009941
- 003
- CZ-PrNML
- 005
- 20160415131226.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkv994 $2 doi
- 024 7_
- $a 10.1093/nar/gkv994 $2 doi
- 035 __
- $a (PubMed)26433223
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Stadlbauer, Petr $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
- 245 10
- $a Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations / $c P. Stadlbauer, P. Kührová, P. Banáš, J. Koča, G. Bussi, L. Trantírek, M. Otyepka, J. Šponer,
- 520 9_
- $a DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 μs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-μs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.
- 650 _2
- $a kationty $x chemie $7 D002412
- 650 _2
- $a DNA $x chemie $7 D004247
- 650 12
- $a G-kvadruplexy $7 D054856
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a Oxytricha $x genetika $7 D016813
- 650 _2
- $a telomery $x chemie $7 D016615
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kührová, Petra $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Banáš, Pavel $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Koča, Jaroslav $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic National Center for Biomolecular Research, Faculty of Science, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
- 700 1_
- $a Bussi, Giovanni $u Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy.
- 700 1_
- $a Trantírek, Lukáš $u CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
- 700 1_
- $a Otyepka, Michal $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Šponer, Jiří $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic sponer@ncbr.muni.cz.
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 43, č. 20 (2015), s. 9626-44
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26433223 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415131311 $b ABA008
- 999 __
- $a ok $b bmc $g 1113370 $s 934309
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 43 $c 20 $d 9626-44 $e 20151003 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20160408