-
Je něco špatně v tomto záznamu ?
The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae)
EW. McCarthy, SE. Arnold, L. Chittka, SC. Le Comber, R. Verity, S. Dodsworth, S. Knapp, LJ. Kelly, MW. Chase, IT. Baldwin, A. Kovařík, C. Mhiri, L. Taylor, AR. Leitch,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
PubMed Central
od 1995 do Před 1 rokem
Europe PubMed Central
od 1995 do Před 1 rokem
Open Access Digital Library
od 1993-01-01
Medline Complete (EBSCOhost)
od 1996-01-01 do Před 1 rokem
PubMed
25979919
DOI
10.1093/aob/mcv048
Knihovny.cz E-zdroje
- MeSH
- barva * MeSH
- biologická evoluce * MeSH
- hybridizace genetická * MeSH
- květy fyziologie MeSH
- pigmentace MeSH
- polyploidie * MeSH
- tabák genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. METHODS: Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. KEY RESULTS: Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. CONCLUSIONS: Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010183
- 003
- CZ-PrNML
- 005
- 20160412104003.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/aob/mcv048 $2 doi
- 024 7_
- $a 10.1093/aob/mcv048 $2 doi
- 035 __
- $a (PubMed)25979919
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a McCarthy, Elizabeth W $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 245 14
- $a The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae) / $c EW. McCarthy, SE. Arnold, L. Chittka, SC. Le Comber, R. Verity, S. Dodsworth, S. Knapp, LJ. Kelly, MW. Chase, IT. Baldwin, A. Kovařík, C. Mhiri, L. Taylor, AR. Leitch,
- 520 9_
- $a BACKGROUND AND AIMS: Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. METHODS: Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. KEY RESULTS: Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. CONCLUSIONS: Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.
- 650 12
- $a biologická evoluce $7 D005075
- 650 12
- $a barva $7 D003116
- 650 _2
- $a květy $x fyziologie $7 D035264
- 650 12
- $a hybridizace genetická $7 D006824
- 650 _2
- $a pigmentace $7 D010858
- 650 12
- $a polyploidie $7 D011123
- 650 _2
- $a tabák $x genetika $x fyziologie $7 D014026
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Arnold, Sarah E J $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK. $7 gn_A_00008727
- 700 1_
- $a Chittka, Lars $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Le Comber, Steven C $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Verity, Robert $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Dodsworth, Steven $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Knapp, Sandra $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Kelly, Laura J $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Chase, Mark W $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Baldwin, Ian T $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Kovařík, Aleš $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Mhiri, Corinne $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Taylor, Lin $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
- 700 1_
- $a Leitch, Andrew R $u School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK a.r.leitch@qmul.ac.uk.
- 773 0_
- $w MED00000419 $t Annals of botany $x 1095-8290 $g Roč. 115, č. 7 (2015), s. 1117-31
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25979919 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160412104046 $b ABA008
- 999 __
- $a ok $b bmc $g 1113612 $s 934551
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 115 $c 7 $d 1117-31 $e 20150515 $i 1095-8290 $m Annals of botany $n Ann. bot. (Print) $x MED00000419
- LZP __
- $a Pubmed-20160408