-
Je něco špatně v tomto záznamu ?
Numerical responses in resource-based mutualisms: A time scale approach
TA. Revilla,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologické modely * MeSH
- ekosystém MeSH
- opylení MeSH
- populační dynamika MeSH
- šíření semen MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many mutualisms involve inter-specific resource exchanges, making consumer-resource approaches ideal for studying their dynamics. Also in many cases these resources are short lived (e.g. flowers) compared with the population dynamics of their producers and consumers (e.g. plants and insects), which justifies a separation of time scales. As a result, we can derive the numerical response of one species with respect to the abundance of another. For resource consumers, the numerical responses can account for intra-specific competition for mutualistic resources (e.g. nectar), thus connecting competition theory and mutualism mechanistically. For species that depend on services (e.g. pollination, seed dispersal), the numerical responses display saturation of benefits, with service handling times related with rates of resource production (e.g. flower turnover time). In both scenarios, competition and saturation have the same underlying cause, which is that resource production occurs at a finite velocity per individual, but their consumption tracks the much faster rates of population growth characterizing mutualisms. The resulting models display all the basic features seen in many models of facultative and obligate mutualisms, and they can be generalized from species pairs to larger communities.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010238
- 003
- CZ-PrNML
- 005
- 20160415104824.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jtbi.2015.04.012 $2 doi
- 024 7_
- $a 10.1016/j.jtbi.2015.04.012 $2 doi
- 035 __
- $a (PubMed)25936757
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Revilla, Tomás A $u Biology Center AS CR, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic. Electronic address: tomrevilla@gmail.com.
- 245 10
- $a Numerical responses in resource-based mutualisms: A time scale approach / $c TA. Revilla,
- 520 9_
- $a Many mutualisms involve inter-specific resource exchanges, making consumer-resource approaches ideal for studying their dynamics. Also in many cases these resources are short lived (e.g. flowers) compared with the population dynamics of their producers and consumers (e.g. plants and insects), which justifies a separation of time scales. As a result, we can derive the numerical response of one species with respect to the abundance of another. For resource consumers, the numerical responses can account for intra-specific competition for mutualistic resources (e.g. nectar), thus connecting competition theory and mutualism mechanistically. For species that depend on services (e.g. pollination, seed dispersal), the numerical responses display saturation of benefits, with service handling times related with rates of resource production (e.g. flower turnover time). In both scenarios, competition and saturation have the same underlying cause, which is that resource production occurs at a finite velocity per individual, but their consumption tracks the much faster rates of population growth characterizing mutualisms. The resulting models display all the basic features seen in many models of facultative and obligate mutualisms, and they can be generalized from species pairs to larger communities.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a ekosystém $7 D017753
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a opylení $7 D054817
- 650 _2
- $a populační dynamika $7 D011157
- 650 _2
- $a šíření semen $7 D058614
- 650 12
- $a symbióza $7 D013559
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 773 0_
- $w MED00003018 $t Journal of theoretical biology $x 1095-8541 $g Roč. 378, č. - (2015), s. 39-46
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25936757 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415104909 $b ABA008
- 999 __
- $a ok $b bmc $g 1113667 $s 934606
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 378 $c - $d 39-46 $e 20150429 $i 1095-8541 $m Journal of theoretical biology $n J Theor Biol $x MED00003018
- LZP __
- $a Pubmed-20160408