• Je něco špatně v tomto záznamu ?

Stein's neuronal model with pooled renewal input

K. Rajdl, P. Lansky,

. 2015 ; 109 (3) : 389-99. [pub] 20150425

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010275
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 1996-08-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

The input of Stein's model of a single neuron is usually described by using a Poisson process, which is assumed to represent the behaviour of spikes pooled from a large number of presynaptic spike trains. However, such a description of the input is not always appropriate as the variability cannot be separated from the intensity. Therefore, we create and study Stein's model with a more general input, a sum of equilibrium renewal processes. The mean and variance of the membrane potential are derived for this model. Using these formulas and numerical simulations, the model is analyzed to study the influence of the input variability on the properties of the membrane potential and the output spike trains. The generalized Stein's model is compared with the original Stein's model with Poissonian input using the relative difference of variances of membrane potential at steady state and the integral square error of output interspike intervals. Both of the criteria show large differences between the models for input with high variability.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010275
003      
CZ-PrNML
005      
20160412113807.0
007      
ta
008      
160408s2015 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00422-015-0650-x $2 doi
024    7_
$a 10.1007/s00422-015-0650-x $2 doi
035    __
$a (PubMed)25910437
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Rajdl, Kamil $u Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic, xrajdl@math.muni.cz.
245    10
$a Stein's neuronal model with pooled renewal input / $c K. Rajdl, P. Lansky,
520    9_
$a The input of Stein's model of a single neuron is usually described by using a Poisson process, which is assumed to represent the behaviour of spikes pooled from a large number of presynaptic spike trains. However, such a description of the input is not always appropriate as the variability cannot be separated from the intensity. Therefore, we create and study Stein's model with a more general input, a sum of equilibrium renewal processes. The mean and variance of the membrane potential are derived for this model. Using these formulas and numerical simulations, the model is analyzed to study the influence of the input variability on the properties of the membrane potential and the output spike trains. The generalized Stein's model is compared with the original Stein's model with Poissonian input using the relative difference of variances of membrane potential at steady state and the integral square error of output interspike intervals. Both of the criteria show large differences between the models for input with high variability.
650    _2
$a zvířata $7 D000818
650    _2
$a lidé $7 D006801
650    _2
$a membránové potenciály $x fyziologie $7 D008564
650    12
$a modely neurologické $7 D008959
650    _2
$a nervová síť $x fyziologie $7 D009415
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a stochastické procesy $7 D013269
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lansky, Petr
773    0_
$w MED00000732 $t Biological cybernetics $x 1432-0770 $g Roč. 109, č. 3 (2015), s. 389-99
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25910437 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160412113851 $b ABA008
999    __
$a ok $b bmc $g 1113704 $s 934643
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 109 $c 3 $d 389-99 $e 20150425 $i 1432-0770 $m Biological cybernetics $n Biol Cybern $x MED00000732
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...