-
Je něco špatně v tomto záznamu ?
Stein's neuronal model with pooled renewal input
K. Rajdl, P. Lansky,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 1996-08-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- lidé MeSH
- membránové potenciály fyziologie MeSH
- modely neurologické * MeSH
- nervová síť fyziologie MeSH
- neurony fyziologie MeSH
- stochastické procesy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The input of Stein's model of a single neuron is usually described by using a Poisson process, which is assumed to represent the behaviour of spikes pooled from a large number of presynaptic spike trains. However, such a description of the input is not always appropriate as the variability cannot be separated from the intensity. Therefore, we create and study Stein's model with a more general input, a sum of equilibrium renewal processes. The mean and variance of the membrane potential are derived for this model. Using these formulas and numerical simulations, the model is analyzed to study the influence of the input variability on the properties of the membrane potential and the output spike trains. The generalized Stein's model is compared with the original Stein's model with Poissonian input using the relative difference of variances of membrane potential at steady state and the integral square error of output interspike intervals. Both of the criteria show large differences between the models for input with high variability.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010275
- 003
- CZ-PrNML
- 005
- 20160412113807.0
- 007
- ta
- 008
- 160408s2015 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00422-015-0650-x $2 doi
- 024 7_
- $a 10.1007/s00422-015-0650-x $2 doi
- 035 __
- $a (PubMed)25910437
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Rajdl, Kamil $u Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic, xrajdl@math.muni.cz.
- 245 10
- $a Stein's neuronal model with pooled renewal input / $c K. Rajdl, P. Lansky,
- 520 9_
- $a The input of Stein's model of a single neuron is usually described by using a Poisson process, which is assumed to represent the behaviour of spikes pooled from a large number of presynaptic spike trains. However, such a description of the input is not always appropriate as the variability cannot be separated from the intensity. Therefore, we create and study Stein's model with a more general input, a sum of equilibrium renewal processes. The mean and variance of the membrane potential are derived for this model. Using these formulas and numerical simulations, the model is analyzed to study the influence of the input variability on the properties of the membrane potential and the output spike trains. The generalized Stein's model is compared with the original Stein's model with Poissonian input using the relative difference of variances of membrane potential at steady state and the integral square error of output interspike intervals. Both of the criteria show large differences between the models for input with high variability.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a membránové potenciály $x fyziologie $7 D008564
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a nervová síť $x fyziologie $7 D009415
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a stochastické procesy $7 D013269
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lansky, Petr
- 773 0_
- $w MED00000732 $t Biological cybernetics $x 1432-0770 $g Roč. 109, č. 3 (2015), s. 389-99
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25910437 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160412113851 $b ABA008
- 999 __
- $a ok $b bmc $g 1113704 $s 934643
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 109 $c 3 $d 389-99 $e 20150425 $i 1432-0770 $m Biological cybernetics $n Biol Cybern $x MED00000732
- LZP __
- $a Pubmed-20160408