Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Multicomponent model of deformation and detachment of a biofilm under fluid flow

G. Tierra, JP. Pavissich, R. Nerenberg, Z. Xu, MS. Alber,

. 2015 ; 12 (106) : .

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010410

A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between [Formula: see text] and [Formula: see text] m s(-1) which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than [Formula: see text]. Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010410
003      
CZ-PrNML
005      
20160415104624.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1098/rsif.2015.0045 $2 doi
024    7_
$a 10.1098/rsif.2015.0045 $2 doi
035    __
$a (PubMed)25808342
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Tierra, Giordano $u Mathematical Institute, Faculty of Mathematics and Physics, Charles University, 186 75 Prague 8, Czech Republic Department of Applied and Computational Mathematics and Statistics University of Notre Dame, Notre Dame, IN 46556, USA.
245    10
$a Multicomponent model of deformation and detachment of a biofilm under fluid flow / $c G. Tierra, JP. Pavissich, R. Nerenberg, Z. Xu, MS. Alber,
520    9_
$a A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between [Formula: see text] and [Formula: see text] m s(-1) which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than [Formula: see text]. Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations.
650    _2
$a Bacteria $x cytologie $7 D001419
650    _2
$a bakteriální adheze $x fyziologie $7 D001422
650    _2
$a fyziologie bakterií $7 D018407
650    _2
$a biofilmy $x růst a vývoj $7 D018441
650    _2
$a velikost buňky $7 D048429
650    _2
$a počítačová simulace $7 D003198
650    _2
$a modul pružnosti $x fyziologie $7 D055119
650    _2
$a mikrofluidika $x metody $7 D044085
650    12
$a biologické modely $7 D008954
650    _2
$a bakteriální polysacharidy $x metabolismus $7 D011135
650    _2
$a pevnost ve smyku $x fyziologie $7 D033081
650    _2
$a mechanický stres $7 D013314
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Pavissich, Juan P $u Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
700    1_
$a Nerenberg, Robert $u Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
700    1_
$a Xu, Zhiliang $u Department of Applied and Computational Mathematics and Statistics University of Notre Dame, Notre Dame, IN 46556, USA.
700    1_
$a Alber, Mark S $u Department of Applied and Computational Mathematics and Statistics University of Notre Dame, Notre Dame, IN 46556, USA malber@nd.edu. $7 gn_A_00003400
773    0_
$w MED00180378 $t Journal of the Royal Society, Interface the Royal Society $x 1742-5662 $g Roč. 12, č. 106 (2015)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25808342 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160415104709 $b ABA008
999    __
$a ok $b bmc $g 1113839 $s 934778
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 12 $c 106 $i 1742-5662 $m Journal of the Royal Society, Interface $n J R Soc Interface $x MED00180378
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...