Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study

A. Gholizadeh, L. Borůvka, R. Vašát, M. Saberioon, A. Klement, J. Kratina, V. Tejnecký, O. Drábek,

. 2015 ; 10 (2) : e0117457. [pub] 20150218

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

In order to monitor Potentially Toxic Elements (PTEs) in anthropogenic soils on brown coal mining dumpsites, a large number of samples and cumbersome, time-consuming laboratory measurements are required. Due to its rapidity, convenience and accuracy, reflectance spectroscopy within the Visible-Near Infrared (Vis-NIR) region has been used to predict soil constituents. This study evaluated the suitability of Vis-NIR (350-2500 nm) reflectance spectroscopy for predicting PTEs concentration, using samples collected on large brown coal mining dumpsites in the Czech Republic. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR) with cross-validation were used to relate PTEs data to the reflectance spectral data by applying different preprocessing strategies. According to the criteria of minimal Root Mean Square Error of Prediction of Cross Validation (RMSEPcv) and maximal coefficient of determination (R2cv) and Residual Prediction Deviation (RPD), the SVMR models with the first derivative pretreatment provided the most accurate prediction for As (R2cv) = 0.89, RMSEPcv = 1.89, RPD = 2.63). Less accurate, but acceptable prediction for screening purposes for Cd and Cu (0.66 ˂ R2cv) ˂ 0.81, RMSEPcv = 0.0.8 and 4.08 respectively, 2.0 ˂ RPD ˂ 2.5) were obtained. The PLSR model for predicting Mn (R2cv) = 0.44, RMSEPcv = 116.43, RPD = 1.45) presented an inadequate model. Overall, SVMR models for the Vis-NIR spectra could be used indirectly for an accurate assessment of PTEs' concentrations.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010540
003      
CZ-PrNML
005      
20160408112357.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0117457 $2 doi
024    7_
$a 10.1371/journal.pone.0117457 $2 doi
035    __
$a (PubMed)25692671
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Gholizadeh, Asa $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcká 129, 165 21- Suchdol, Praha 6- Prague, Czech Republic.
245    10
$a Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study / $c A. Gholizadeh, L. Borůvka, R. Vašát, M. Saberioon, A. Klement, J. Kratina, V. Tejnecký, O. Drábek,
520    9_
$a In order to monitor Potentially Toxic Elements (PTEs) in anthropogenic soils on brown coal mining dumpsites, a large number of samples and cumbersome, time-consuming laboratory measurements are required. Due to its rapidity, convenience and accuracy, reflectance spectroscopy within the Visible-Near Infrared (Vis-NIR) region has been used to predict soil constituents. This study evaluated the suitability of Vis-NIR (350-2500 nm) reflectance spectroscopy for predicting PTEs concentration, using samples collected on large brown coal mining dumpsites in the Czech Republic. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR) with cross-validation were used to relate PTEs data to the reflectance spectral data by applying different preprocessing strategies. According to the criteria of minimal Root Mean Square Error of Prediction of Cross Validation (RMSEPcv) and maximal coefficient of determination (R2cv) and Residual Prediction Deviation (RPD), the SVMR models with the first derivative pretreatment provided the most accurate prediction for As (R2cv) = 0.89, RMSEPcv = 1.89, RPD = 2.63). Less accurate, but acceptable prediction for screening purposes for Cd and Cu (0.66 ˂ R2cv) ˂ 0.81, RMSEPcv = 0.0.8 and 4.08 respectively, 2.0 ˂ RPD ˂ 2.5) were obtained. The PLSR model for predicting Mn (R2cv) = 0.44, RMSEPcv = 116.43, RPD = 1.45) presented an inadequate model. Overall, SVMR models for the Vis-NIR spectra could be used indirectly for an accurate assessment of PTEs' concentrations.
650    12
$a těžba uhlí $7 D003032
650    _2
$a monitorování životního prostředí $7 D004784
650    _2
$a znečištění životního prostředí $x analýza $7 D004787
650    _2
$a půda $x chemie $7 D012987
650    _2
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Borůvka, Luboš $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcká 129, 165 21- Suchdol, Praha 6- Prague, Czech Republic.
700    1_
$a Vašát, Radim $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcká 129, 165 21- Suchdol, Praha 6- Prague, Czech Republic.
700    1_
$a Saberioon, Mohammadmehdi $u Laboratory of Image and Signal Processing, Institute of Complex Systems, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zámek 136 37 333- Nové Hrady, Czech Republic.
700    1_
$a Klement, Aleš $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcká 129, 165 21- Suchdol, Praha 6- Prague, Czech Republic.
700    1_
$a Kratina, Josef $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcká 129, 165 21- Suchdol, Praha 6- Prague, Czech Republic.
700    1_
$a Tejnecký, Václav $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcká 129, 165 21- Suchdol, Praha 6- Prague, Czech Republic.
700    1_
$a Drábek, Ondřej $u Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcká 129, 165 21- Suchdol, Praha 6- Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 10, č. 2 (2015), s. e0117457
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25692671 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160408112435 $b ABA008
999    __
$a ok $b bmc $g 1113969 $s 934908
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 10 $c 2 $d e0117457 $e 20150218 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...