Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Exploring the potential of fungal arylacetonitrilases in mandelic acid synthesis

AB. Veselá, A. Křenková, L. Martínková,

. 2015 ; 57 (5) : 466-74.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK ProQuest Central from 1997-02-01 to 1 year ago
Medline Complete (EBSCOhost) from 2011-01-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-02-01 to 1 year ago

The application of arylacetonitrilases from filamentous fungi to the hydrolysis of high concentrations of (R,S)-mandelonitrile (100-500 mM) was demonstrated for the first time. Escherichia coli strains expressing the corresponding genes were used as whole-cell catalysts. Nitrilases from Aspergillus niger, Neurospora crassa, Nectria haematococca, and Arthroderma benhamiae (enzymes NitAn, NitNc, NitNh, and NitAb, respectively) exhibited different degrees of enantio- and chemoselectivity (amide formation). Their enantio- and chemoselectivity was increased by increasing pH (from 8 to 9-10) and adding 4-10% (v/v) toluene as the cosolvent. NitAn and NitNc were able to convert an up to 500 mM substrate in batch mode. NitAn formed a very low amount of the by-product, amide (<1% of the total product). This enzyme produced up to >70 g/L of (R)-mandelic acid (e.e. 94.5-95.6%) in batch or fed-batch mode. Its volumetric productivities were the highest in batch mode [571 ± 32 g/(L d)] and its catalyst productivities in fed-batch mode (39.9 ± 2.5 g/g of dcw). NitAb hydrolyzed both enantiomers of 100 mM (R,S)-mandelonitrile at pH 5.0 and is therefore promising for the enantioretentive transformation of (S)-mandelonitrile. Sequence analysis suggested that fungal arylacetonitrilases with similar properties (enantioselectivity, chemoselectivity) were clustered together.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010584
003      
CZ-PrNML
005      
20160415112339.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s12033-015-9840-y $2 doi
024    7_
$a 10.1007/s12033-015-9840-y $2 doi
035    __
$a (PubMed)25652193
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Veselá, Alicja B $u Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic, vesela@biomed.cas.cz.
245    10
$a Exploring the potential of fungal arylacetonitrilases in mandelic acid synthesis / $c AB. Veselá, A. Křenková, L. Martínková,
520    9_
$a The application of arylacetonitrilases from filamentous fungi to the hydrolysis of high concentrations of (R,S)-mandelonitrile (100-500 mM) was demonstrated for the first time. Escherichia coli strains expressing the corresponding genes were used as whole-cell catalysts. Nitrilases from Aspergillus niger, Neurospora crassa, Nectria haematococca, and Arthroderma benhamiae (enzymes NitAn, NitNc, NitNh, and NitAb, respectively) exhibited different degrees of enantio- and chemoselectivity (amide formation). Their enantio- and chemoselectivity was increased by increasing pH (from 8 to 9-10) and adding 4-10% (v/v) toluene as the cosolvent. NitAn and NitNc were able to convert an up to 500 mM substrate in batch mode. NitAn formed a very low amount of the by-product, amide (<1% of the total product). This enzyme produced up to >70 g/L of (R)-mandelic acid (e.e. 94.5-95.6%) in batch or fed-batch mode. Its volumetric productivities were the highest in batch mode [571 ± 32 g/(L d)] and its catalyst productivities in fed-batch mode (39.9 ± 2.5 g/g of dcw). NitAb hydrolyzed both enantiomers of 100 mM (R,S)-mandelonitrile at pH 5.0 and is therefore promising for the enantioretentive transformation of (S)-mandelonitrile. Sequence analysis suggested that fungal arylacetonitrilases with similar properties (enantioselectivity, chemoselectivity) were clustered together.
650    _2
$a aminohydrolasy $x chemie $x genetika $x metabolismus $7 D000619
650    _2
$a Arthrodermataceae $x enzymologie $7 D003883
650    _2
$a Aspergillus niger $x enzymologie $7 D001234
650    _2
$a fungální proteiny $x chemie $x genetika $x metabolismus $7 D005656
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a kyseliny mandlové $x metabolismus $7 D008333
650    _2
$a Nectria $x enzymologie $7 D055330
650    _2
$a Neurospora crassa $x enzymologie $7 D009492
650    _2
$a fylogeneze $7 D010802
650    _2
$a druhová specificita $7 D013045
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Křenková, Alena
700    1_
$a Martínková, Ludmila
773    0_
$w MED00180392 $t Molecular biotechnology $x 1559-0305 $g Roč. 57, č. 5 (2015), s. 466-74
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25652193 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160415112423 $b ABA008
999    __
$a ok $b bmc $g 1114013 $s 934952
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 57 $c 5 $d 466-74 $i 1559-0305 $m Molecular biotechnology $n Mol Biotechnol $x MED00180392
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...